Fast and scalable likelihood maximization for Exponential Random Graph Models with local constraints
Abstract Exponential Random Graph Models (ERGMs) have gained increasing popularity over the years. Rooted into statistical physics, the ERGMs framework has been successfully employed for reconstructing networks, detecting statistically significant patterns in graphs, counting networked configuration...
Enregistré dans:
Auteurs principaux: | Nicolò Vallarano, Matteo Bruno, Emiliano Marchese, Giuseppe Trapani, Fabio Saracco, Giulio Cimini, Mario Zanon, Tiziano Squartini |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/00f9f8db37124723b7faa9a1b6954d4c |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Networked partisanship and framing: A socio-semantic network analysis of the Italian debate on migration.
par: Tommaso Radicioni, et autres
Publié: (2021) -
Analysing Twitter semantic networks: the case of 2018 Italian elections
par: Tommaso Radicioni, et autres
Publié: (2021) -
Fast-forwarding of Hamiltonians and exponentially precise measurements
par: Yosi Atia, et autres
Publié: (2017) -
Multi GPU parallelization of maximum likelihood expectation maximization method for digital rock tomography data
par: Jaya Prakash, et autres
Publié: (2021) -
Parallel power posterior analyses for fast computation of marginal likelihoods in phylogenetics
par: Sebastian Höhna, et autres
Publié: (2021)