Predicting pathogenic non-coding SVs disrupting the 3D genome in 1646 whole cancer genomes using multiple instance learning
Abstract Over the past years, large consortia have been established to fuel the sequencing of whole genomes of many cancer patients. Despite the increased abundance in tools to study the impact of SNVs, non-coding SVs have been largely ignored in these data. Here, we introduce svMIL2, an improved ve...
Enregistré dans:
| Auteurs principaux: | , , |
|---|---|
| Format: | article |
| Langue: | EN |
| Publié: |
Nature Portfolio
2021
|
| Sujets: | |
| Accès en ligne: | https://doaj.org/article/0b53ef2e3f784aba84c29c9f9d64c804 |
| Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|