Predicting pathogenic non-coding SVs disrupting the 3D genome in 1646 whole cancer genomes using multiple instance learning

Abstract Over the past years, large consortia have been established to fuel the sequencing of whole genomes of many cancer patients. Despite the increased abundance in tools to study the impact of SNVs, non-coding SVs have been largely ignored in these data. Here, we introduce svMIL2, an improved ve...

Description complète

Enregistré dans:
Détails bibliographiques
Auteurs principaux: Marleen M. Nieboer, Luan Nguyen, Jeroen de Ridder
Format: article
Langue:EN
Publié: Nature Portfolio 2021
Sujets:
R
Q
Accès en ligne:https://doaj.org/article/0b53ef2e3f784aba84c29c9f9d64c804
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!