Predicting pathogenic non-coding SVs disrupting the 3D genome in 1646 whole cancer genomes using multiple instance learning
Abstract Over the past years, large consortia have been established to fuel the sequencing of whole genomes of many cancer patients. Despite the increased abundance in tools to study the impact of SNVs, non-coding SVs have been largely ignored in these data. Here, we introduce svMIL2, an improved ve...
Guardado en:
Autores principales: | Marleen M. Nieboer, Luan Nguyen, Jeroen de Ridder |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/0b53ef2e3f784aba84c29c9f9d64c804 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Acta N°1646
por: Banco Central de Chile
Publicado: (2021) -
Ranking of non-coding pathogenic variants and putative essential regions of the human genome
por: Alex Wells, et al.
Publicado: (2019) -
Evaluating whole-genome sequencing quality metrics for enteric pathogen outbreaks
por: Darlene D. Wagner, et al.
Publicado: (2021) -
Whole-genome analysis reveals the contribution of non-coding de novo transposon insertions to autism spectrum disorder
por: Rebeca Borges-Monroy, et al.
Publicado: (2021) -
Comparative analyses of whole-genome protein sequences from multiple organisms
por: Makio Yokono, et al.
Publicado: (2018)