Metamaterial-Engineered Silicon Beam Splitter Fabricated with Deep UV Immersion Lithography

Subwavelength grating (SWG) metamaterials have garnered a great interest for their singular capability to shape the material properties and the propagation of light, allowing the realization of devices with unprecedented performance. However, practical SWG implementations are limited by fabrication...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Vladyslav Vakarin, Daniele Melati, Thi Thuy Duong Dinh, Xavier Le Roux, Warren Kut King Kan, Cécilia Dupré, Bertrand Szelag, Stéphane Monfray, Frédéric Boeuf, Pavel Cheben, Eric Cassan, Delphine Marris-Morini, Laurent Vivien, Carlos Alberto Alonso-Ramos
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
Acceso en línea:https://doaj.org/article/1381e63113ea465e9bb395f266d5e229
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:1381e63113ea465e9bb395f266d5e229
record_format dspace
spelling oai:doaj.org-article:1381e63113ea465e9bb395f266d5e2292021-11-25T18:31:06ZMetamaterial-Engineered Silicon Beam Splitter Fabricated with Deep UV Immersion Lithography10.3390/nano111129492079-4991https://doaj.org/article/1381e63113ea465e9bb395f266d5e2292021-11-01T00:00:00Zhttps://www.mdpi.com/2079-4991/11/11/2949https://doaj.org/toc/2079-4991Subwavelength grating (SWG) metamaterials have garnered a great interest for their singular capability to shape the material properties and the propagation of light, allowing the realization of devices with unprecedented performance. However, practical SWG implementations are limited by fabrication constraints, such as minimum feature size, that restrict the available design space or compromise compatibility with high-volume fabrication technologies. Indeed, most successful SWG realizations so far relied on electron-beam lithographic techniques, compromising the scalability of the approach. Here, we report the experimental demonstration of an SWG metamaterial engineered beam splitter fabricated with deep-ultraviolet immersion lithography in a 300-mm silicon-on-insulator technology. The metamaterial beam splitter exhibits high performance over a measured bandwidth exceeding 186 nm centered at 1550 nm. These results open a new route for the development of scalable silicon photonic circuits exploiting flexible metamaterial engineering.Vladyslav VakarinDaniele MelatiThi Thuy Duong DinhXavier Le RouxWarren Kut King KanCécilia DupréBertrand SzelagStéphane MonfrayFrédéric BoeufPavel ChebenEric CassanDelphine Marris-MoriniLaurent VivienCarlos Alberto Alonso-RamosMDPI AGarticlesubwavelength gratingmetamaterialsilicon photonicsmulti-mode interference couplerbeam splitterChemistryQD1-999ENNanomaterials, Vol 11, Iss 2949, p 2949 (2021)
institution DOAJ
collection DOAJ
language EN
topic subwavelength grating
metamaterial
silicon photonics
multi-mode interference coupler
beam splitter
Chemistry
QD1-999
spellingShingle subwavelength grating
metamaterial
silicon photonics
multi-mode interference coupler
beam splitter
Chemistry
QD1-999
Vladyslav Vakarin
Daniele Melati
Thi Thuy Duong Dinh
Xavier Le Roux
Warren Kut King Kan
Cécilia Dupré
Bertrand Szelag
Stéphane Monfray
Frédéric Boeuf
Pavel Cheben
Eric Cassan
Delphine Marris-Morini
Laurent Vivien
Carlos Alberto Alonso-Ramos
Metamaterial-Engineered Silicon Beam Splitter Fabricated with Deep UV Immersion Lithography
description Subwavelength grating (SWG) metamaterials have garnered a great interest for their singular capability to shape the material properties and the propagation of light, allowing the realization of devices with unprecedented performance. However, practical SWG implementations are limited by fabrication constraints, such as minimum feature size, that restrict the available design space or compromise compatibility with high-volume fabrication technologies. Indeed, most successful SWG realizations so far relied on electron-beam lithographic techniques, compromising the scalability of the approach. Here, we report the experimental demonstration of an SWG metamaterial engineered beam splitter fabricated with deep-ultraviolet immersion lithography in a 300-mm silicon-on-insulator technology. The metamaterial beam splitter exhibits high performance over a measured bandwidth exceeding 186 nm centered at 1550 nm. These results open a new route for the development of scalable silicon photonic circuits exploiting flexible metamaterial engineering.
format article
author Vladyslav Vakarin
Daniele Melati
Thi Thuy Duong Dinh
Xavier Le Roux
Warren Kut King Kan
Cécilia Dupré
Bertrand Szelag
Stéphane Monfray
Frédéric Boeuf
Pavel Cheben
Eric Cassan
Delphine Marris-Morini
Laurent Vivien
Carlos Alberto Alonso-Ramos
author_facet Vladyslav Vakarin
Daniele Melati
Thi Thuy Duong Dinh
Xavier Le Roux
Warren Kut King Kan
Cécilia Dupré
Bertrand Szelag
Stéphane Monfray
Frédéric Boeuf
Pavel Cheben
Eric Cassan
Delphine Marris-Morini
Laurent Vivien
Carlos Alberto Alonso-Ramos
author_sort Vladyslav Vakarin
title Metamaterial-Engineered Silicon Beam Splitter Fabricated with Deep UV Immersion Lithography
title_short Metamaterial-Engineered Silicon Beam Splitter Fabricated with Deep UV Immersion Lithography
title_full Metamaterial-Engineered Silicon Beam Splitter Fabricated with Deep UV Immersion Lithography
title_fullStr Metamaterial-Engineered Silicon Beam Splitter Fabricated with Deep UV Immersion Lithography
title_full_unstemmed Metamaterial-Engineered Silicon Beam Splitter Fabricated with Deep UV Immersion Lithography
title_sort metamaterial-engineered silicon beam splitter fabricated with deep uv immersion lithography
publisher MDPI AG
publishDate 2021
url https://doaj.org/article/1381e63113ea465e9bb395f266d5e229
work_keys_str_mv AT vladyslavvakarin metamaterialengineeredsiliconbeamsplitterfabricatedwithdeepuvimmersionlithography
AT danielemelati metamaterialengineeredsiliconbeamsplitterfabricatedwithdeepuvimmersionlithography
AT thithuyduongdinh metamaterialengineeredsiliconbeamsplitterfabricatedwithdeepuvimmersionlithography
AT xavierleroux metamaterialengineeredsiliconbeamsplitterfabricatedwithdeepuvimmersionlithography
AT warrenkutkingkan metamaterialengineeredsiliconbeamsplitterfabricatedwithdeepuvimmersionlithography
AT ceciliadupre metamaterialengineeredsiliconbeamsplitterfabricatedwithdeepuvimmersionlithography
AT bertrandszelag metamaterialengineeredsiliconbeamsplitterfabricatedwithdeepuvimmersionlithography
AT stephanemonfray metamaterialengineeredsiliconbeamsplitterfabricatedwithdeepuvimmersionlithography
AT fredericboeuf metamaterialengineeredsiliconbeamsplitterfabricatedwithdeepuvimmersionlithography
AT pavelcheben metamaterialengineeredsiliconbeamsplitterfabricatedwithdeepuvimmersionlithography
AT ericcassan metamaterialengineeredsiliconbeamsplitterfabricatedwithdeepuvimmersionlithography
AT delphinemarrismorini metamaterialengineeredsiliconbeamsplitterfabricatedwithdeepuvimmersionlithography
AT laurentvivien metamaterialengineeredsiliconbeamsplitterfabricatedwithdeepuvimmersionlithography
AT carlosalbertoalonsoramos metamaterialengineeredsiliconbeamsplitterfabricatedwithdeepuvimmersionlithography
_version_ 1718410999830151168