Metamaterial-Engineered Silicon Beam Splitter Fabricated with Deep UV Immersion Lithography
Subwavelength grating (SWG) metamaterials have garnered a great interest for their singular capability to shape the material properties and the propagation of light, allowing the realization of devices with unprecedented performance. However, practical SWG implementations are limited by fabrication...
Guardado en:
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/1381e63113ea465e9bb395f266d5e229 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:1381e63113ea465e9bb395f266d5e229 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:1381e63113ea465e9bb395f266d5e2292021-11-25T18:31:06ZMetamaterial-Engineered Silicon Beam Splitter Fabricated with Deep UV Immersion Lithography10.3390/nano111129492079-4991https://doaj.org/article/1381e63113ea465e9bb395f266d5e2292021-11-01T00:00:00Zhttps://www.mdpi.com/2079-4991/11/11/2949https://doaj.org/toc/2079-4991Subwavelength grating (SWG) metamaterials have garnered a great interest for their singular capability to shape the material properties and the propagation of light, allowing the realization of devices with unprecedented performance. However, practical SWG implementations are limited by fabrication constraints, such as minimum feature size, that restrict the available design space or compromise compatibility with high-volume fabrication technologies. Indeed, most successful SWG realizations so far relied on electron-beam lithographic techniques, compromising the scalability of the approach. Here, we report the experimental demonstration of an SWG metamaterial engineered beam splitter fabricated with deep-ultraviolet immersion lithography in a 300-mm silicon-on-insulator technology. The metamaterial beam splitter exhibits high performance over a measured bandwidth exceeding 186 nm centered at 1550 nm. These results open a new route for the development of scalable silicon photonic circuits exploiting flexible metamaterial engineering.Vladyslav VakarinDaniele MelatiThi Thuy Duong DinhXavier Le RouxWarren Kut King KanCécilia DupréBertrand SzelagStéphane MonfrayFrédéric BoeufPavel ChebenEric CassanDelphine Marris-MoriniLaurent VivienCarlos Alberto Alonso-RamosMDPI AGarticlesubwavelength gratingmetamaterialsilicon photonicsmulti-mode interference couplerbeam splitterChemistryQD1-999ENNanomaterials, Vol 11, Iss 2949, p 2949 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
subwavelength grating metamaterial silicon photonics multi-mode interference coupler beam splitter Chemistry QD1-999 |
spellingShingle |
subwavelength grating metamaterial silicon photonics multi-mode interference coupler beam splitter Chemistry QD1-999 Vladyslav Vakarin Daniele Melati Thi Thuy Duong Dinh Xavier Le Roux Warren Kut King Kan Cécilia Dupré Bertrand Szelag Stéphane Monfray Frédéric Boeuf Pavel Cheben Eric Cassan Delphine Marris-Morini Laurent Vivien Carlos Alberto Alonso-Ramos Metamaterial-Engineered Silicon Beam Splitter Fabricated with Deep UV Immersion Lithography |
description |
Subwavelength grating (SWG) metamaterials have garnered a great interest for their singular capability to shape the material properties and the propagation of light, allowing the realization of devices with unprecedented performance. However, practical SWG implementations are limited by fabrication constraints, such as minimum feature size, that restrict the available design space or compromise compatibility with high-volume fabrication technologies. Indeed, most successful SWG realizations so far relied on electron-beam lithographic techniques, compromising the scalability of the approach. Here, we report the experimental demonstration of an SWG metamaterial engineered beam splitter fabricated with deep-ultraviolet immersion lithography in a 300-mm silicon-on-insulator technology. The metamaterial beam splitter exhibits high performance over a measured bandwidth exceeding 186 nm centered at 1550 nm. These results open a new route for the development of scalable silicon photonic circuits exploiting flexible metamaterial engineering. |
format |
article |
author |
Vladyslav Vakarin Daniele Melati Thi Thuy Duong Dinh Xavier Le Roux Warren Kut King Kan Cécilia Dupré Bertrand Szelag Stéphane Monfray Frédéric Boeuf Pavel Cheben Eric Cassan Delphine Marris-Morini Laurent Vivien Carlos Alberto Alonso-Ramos |
author_facet |
Vladyslav Vakarin Daniele Melati Thi Thuy Duong Dinh Xavier Le Roux Warren Kut King Kan Cécilia Dupré Bertrand Szelag Stéphane Monfray Frédéric Boeuf Pavel Cheben Eric Cassan Delphine Marris-Morini Laurent Vivien Carlos Alberto Alonso-Ramos |
author_sort |
Vladyslav Vakarin |
title |
Metamaterial-Engineered Silicon Beam Splitter Fabricated with Deep UV Immersion Lithography |
title_short |
Metamaterial-Engineered Silicon Beam Splitter Fabricated with Deep UV Immersion Lithography |
title_full |
Metamaterial-Engineered Silicon Beam Splitter Fabricated with Deep UV Immersion Lithography |
title_fullStr |
Metamaterial-Engineered Silicon Beam Splitter Fabricated with Deep UV Immersion Lithography |
title_full_unstemmed |
Metamaterial-Engineered Silicon Beam Splitter Fabricated with Deep UV Immersion Lithography |
title_sort |
metamaterial-engineered silicon beam splitter fabricated with deep uv immersion lithography |
publisher |
MDPI AG |
publishDate |
2021 |
url |
https://doaj.org/article/1381e63113ea465e9bb395f266d5e229 |
work_keys_str_mv |
AT vladyslavvakarin metamaterialengineeredsiliconbeamsplitterfabricatedwithdeepuvimmersionlithography AT danielemelati metamaterialengineeredsiliconbeamsplitterfabricatedwithdeepuvimmersionlithography AT thithuyduongdinh metamaterialengineeredsiliconbeamsplitterfabricatedwithdeepuvimmersionlithography AT xavierleroux metamaterialengineeredsiliconbeamsplitterfabricatedwithdeepuvimmersionlithography AT warrenkutkingkan metamaterialengineeredsiliconbeamsplitterfabricatedwithdeepuvimmersionlithography AT ceciliadupre metamaterialengineeredsiliconbeamsplitterfabricatedwithdeepuvimmersionlithography AT bertrandszelag metamaterialengineeredsiliconbeamsplitterfabricatedwithdeepuvimmersionlithography AT stephanemonfray metamaterialengineeredsiliconbeamsplitterfabricatedwithdeepuvimmersionlithography AT fredericboeuf metamaterialengineeredsiliconbeamsplitterfabricatedwithdeepuvimmersionlithography AT pavelcheben metamaterialengineeredsiliconbeamsplitterfabricatedwithdeepuvimmersionlithography AT ericcassan metamaterialengineeredsiliconbeamsplitterfabricatedwithdeepuvimmersionlithography AT delphinemarrismorini metamaterialengineeredsiliconbeamsplitterfabricatedwithdeepuvimmersionlithography AT laurentvivien metamaterialengineeredsiliconbeamsplitterfabricatedwithdeepuvimmersionlithography AT carlosalbertoalonsoramos metamaterialengineeredsiliconbeamsplitterfabricatedwithdeepuvimmersionlithography |
_version_ |
1718410999830151168 |