Characterization of 22 nm FDSOI nMOSFETs With Different Backplane Doping at Cryogenic Temperature

In this work, the electrostatic and radio frequency performances of 22 nm FDSOI nMOSFETs with p-type or n-type doped backplane (BP, highly doped layer of silicon below thin buried oxide) at cryogenic temperatures have been investigated. Greater enhancement of drain current <inline-formula> <...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Tiantian Xie, Qing Wang, Hao Ge, Yinghuan Lv, Zhipeng Ren, Jing Chen
Formato: article
Lenguaje:EN
Publicado: IEEE 2021
Materias:
Acceso en línea:https://doaj.org/article/1626b04f45ec4e618814bae339bfac75
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:1626b04f45ec4e618814bae339bfac75
record_format dspace
spelling oai:doaj.org-article:1626b04f45ec4e618814bae339bfac752021-11-09T00:00:23ZCharacterization of 22 nm FDSOI nMOSFETs With Different Backplane Doping at Cryogenic Temperature2168-673410.1109/JEDS.2021.3121495https://doaj.org/article/1626b04f45ec4e618814bae339bfac752021-01-01T00:00:00Zhttps://ieeexplore.ieee.org/document/9582809/https://doaj.org/toc/2168-6734In this work, the electrostatic and radio frequency performances of 22 nm FDSOI nMOSFETs with p-type or n-type doped backplane (BP, highly doped layer of silicon below thin buried oxide) at cryogenic temperatures have been investigated. Greater enhancement of drain current <inline-formula> <tex-math notation="LaTeX">$\text{I}_{\mathrm{ d}}$ </tex-math></inline-formula>, maximum transconductance <inline-formula> <tex-math notation="LaTeX">$\text{g}_{\mathrm{ m,max}}$ </tex-math></inline-formula> and threshold voltage <inline-formula> <tex-math notation="LaTeX">$\text{V}_{\mathrm{ TH}}$ </tex-math></inline-formula> values have been demonstrated at liquid nitrogen temperatures. Furthermore, FDSOI nMOSFETs with n-type BP achieve the maximum transconductance at lower bias voltage and smaller <inline-formula> <tex-math notation="LaTeX">$\text{V}_{\mathrm{ ZTC}}$ </tex-math></inline-formula>, which is mainly due to its small threshold voltage. The variation of threshold voltage of BP-p devices is greater with the decrease of temperature. About 40&#x0025; improvement of <inline-formula> <tex-math notation="LaTeX">$\text{f}_{\mathrm{ T}}$ </tex-math></inline-formula> and 30&#x0025; improvement of <inline-formula> <tex-math notation="LaTeX">$\text{f}_{\mathrm{ max}}$ </tex-math></inline-formula> depended on the <inline-formula> <tex-math notation="LaTeX">$\text{W}_{\mathrm{ f}}$ </tex-math></inline-formula> of devices have been shown. Relevant small-signal parameters (e.g., transconductance <inline-formula> <tex-math notation="LaTeX">$\text{g}_{\mathrm{ m}}$ </tex-math></inline-formula>, gate capacitance <inline-formula> <tex-math notation="LaTeX">$\text{C}_{\mathrm{ gg}}$ </tex-math></inline-formula>, gate resistance <inline-formula> <tex-math notation="LaTeX">$\text{R}_{\mathrm{ g}}$ </tex-math></inline-formula> and output conductance <inline-formula> <tex-math notation="LaTeX">$\text{g}_{\mathrm{ ds}}$ </tex-math></inline-formula>) are also extracted for comparison and analysis. This study presents both 22 nm FDSOI nMOSFETs with p-type or n-type backplane as good candidates for cryogenic applications down to 77 K, and especially, BP-n FDSOI are more suitable for low power operation applications because of their lower threshold voltage. Similar <inline-formula> <tex-math notation="LaTeX">$\text{g}_{\mathrm{ m.max}}$ </tex-math></inline-formula> and the peak values of RF FOMs can be obtained at lower bias voltage compared with BP-p devices.Tiantian XieQing WangHao GeYinghuan LvZhipeng RenJing ChenIEEEarticleBackplane (BP) dopingcryogenicfully- depleted silicon-on-insulator (FDSOI)RF Figures of merit (FOMs)Electrical engineering. Electronics. Nuclear engineeringTK1-9971ENIEEE Journal of the Electron Devices Society, Vol 9, Pp 1030-1035 (2021)
institution DOAJ
collection DOAJ
language EN
topic Backplane (BP) doping
cryogenic
fully- depleted silicon-on-insulator (FDSOI)
RF Figures of merit (FOMs)
Electrical engineering. Electronics. Nuclear engineering
TK1-9971
spellingShingle Backplane (BP) doping
cryogenic
fully- depleted silicon-on-insulator (FDSOI)
RF Figures of merit (FOMs)
Electrical engineering. Electronics. Nuclear engineering
TK1-9971
Tiantian Xie
Qing Wang
Hao Ge
Yinghuan Lv
Zhipeng Ren
Jing Chen
Characterization of 22 nm FDSOI nMOSFETs With Different Backplane Doping at Cryogenic Temperature
description In this work, the electrostatic and radio frequency performances of 22 nm FDSOI nMOSFETs with p-type or n-type doped backplane (BP, highly doped layer of silicon below thin buried oxide) at cryogenic temperatures have been investigated. Greater enhancement of drain current <inline-formula> <tex-math notation="LaTeX">$\text{I}_{\mathrm{ d}}$ </tex-math></inline-formula>, maximum transconductance <inline-formula> <tex-math notation="LaTeX">$\text{g}_{\mathrm{ m,max}}$ </tex-math></inline-formula> and threshold voltage <inline-formula> <tex-math notation="LaTeX">$\text{V}_{\mathrm{ TH}}$ </tex-math></inline-formula> values have been demonstrated at liquid nitrogen temperatures. Furthermore, FDSOI nMOSFETs with n-type BP achieve the maximum transconductance at lower bias voltage and smaller <inline-formula> <tex-math notation="LaTeX">$\text{V}_{\mathrm{ ZTC}}$ </tex-math></inline-formula>, which is mainly due to its small threshold voltage. The variation of threshold voltage of BP-p devices is greater with the decrease of temperature. About 40&#x0025; improvement of <inline-formula> <tex-math notation="LaTeX">$\text{f}_{\mathrm{ T}}$ </tex-math></inline-formula> and 30&#x0025; improvement of <inline-formula> <tex-math notation="LaTeX">$\text{f}_{\mathrm{ max}}$ </tex-math></inline-formula> depended on the <inline-formula> <tex-math notation="LaTeX">$\text{W}_{\mathrm{ f}}$ </tex-math></inline-formula> of devices have been shown. Relevant small-signal parameters (e.g., transconductance <inline-formula> <tex-math notation="LaTeX">$\text{g}_{\mathrm{ m}}$ </tex-math></inline-formula>, gate capacitance <inline-formula> <tex-math notation="LaTeX">$\text{C}_{\mathrm{ gg}}$ </tex-math></inline-formula>, gate resistance <inline-formula> <tex-math notation="LaTeX">$\text{R}_{\mathrm{ g}}$ </tex-math></inline-formula> and output conductance <inline-formula> <tex-math notation="LaTeX">$\text{g}_{\mathrm{ ds}}$ </tex-math></inline-formula>) are also extracted for comparison and analysis. This study presents both 22 nm FDSOI nMOSFETs with p-type or n-type backplane as good candidates for cryogenic applications down to 77 K, and especially, BP-n FDSOI are more suitable for low power operation applications because of their lower threshold voltage. Similar <inline-formula> <tex-math notation="LaTeX">$\text{g}_{\mathrm{ m.max}}$ </tex-math></inline-formula> and the peak values of RF FOMs can be obtained at lower bias voltage compared with BP-p devices.
format article
author Tiantian Xie
Qing Wang
Hao Ge
Yinghuan Lv
Zhipeng Ren
Jing Chen
author_facet Tiantian Xie
Qing Wang
Hao Ge
Yinghuan Lv
Zhipeng Ren
Jing Chen
author_sort Tiantian Xie
title Characterization of 22 nm FDSOI nMOSFETs With Different Backplane Doping at Cryogenic Temperature
title_short Characterization of 22 nm FDSOI nMOSFETs With Different Backplane Doping at Cryogenic Temperature
title_full Characterization of 22 nm FDSOI nMOSFETs With Different Backplane Doping at Cryogenic Temperature
title_fullStr Characterization of 22 nm FDSOI nMOSFETs With Different Backplane Doping at Cryogenic Temperature
title_full_unstemmed Characterization of 22 nm FDSOI nMOSFETs With Different Backplane Doping at Cryogenic Temperature
title_sort characterization of 22 nm fdsoi nmosfets with different backplane doping at cryogenic temperature
publisher IEEE
publishDate 2021
url https://doaj.org/article/1626b04f45ec4e618814bae339bfac75
work_keys_str_mv AT tiantianxie characterizationof22nmfdsoinmosfetswithdifferentbackplanedopingatcryogenictemperature
AT qingwang characterizationof22nmfdsoinmosfetswithdifferentbackplanedopingatcryogenictemperature
AT haoge characterizationof22nmfdsoinmosfetswithdifferentbackplanedopingatcryogenictemperature
AT yinghuanlv characterizationof22nmfdsoinmosfetswithdifferentbackplanedopingatcryogenictemperature
AT zhipengren characterizationof22nmfdsoinmosfetswithdifferentbackplanedopingatcryogenictemperature
AT jingchen characterizationof22nmfdsoinmosfetswithdifferentbackplanedopingatcryogenictemperature
_version_ 1718441363187433472