Evaluation of Indigenous Pichia kudriavzevii from cocoa fermentation for a probiotic candidate

Abstract. Wulan R, Astuti RI, Rukayadi Y, Meryandini A. 2021. Evaluation of Indigenous Pichia kudriavzevii from cocoa fermentation for a probiotic candidate. Biodiversitas 22: 1317-1325. Currently, probiotics are becoming a concern along with a healthy lifestyle awareness. Besides bacteria, yeast ca...

Description complète

Enregistré dans:
Détails bibliographiques
Auteurs principaux: Rahayu Wulan, Rika Indri Astuti, Yaya Rukayadi, Anja Meryandini
Format: article
Langue:EN
Publié: MBI & UNS Solo 2021
Sujets:
Accès en ligne:https://doaj.org/article/22853e2fb6e84cac98f86c396a27991c
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
Description
Résumé:Abstract. Wulan R, Astuti RI, Rukayadi Y, Meryandini A. 2021. Evaluation of Indigenous Pichia kudriavzevii from cocoa fermentation for a probiotic candidate. Biodiversitas 22: 1317-1325. Currently, probiotics are becoming a concern along with a healthy lifestyle awareness. Besides bacteria, yeast can be used as a probiotic candidate with specific functional properties. Research on yeast as a probiotic is still limited (except for Saccharomyces boulardii). Previous research has isolated yeasts from the cocoa fermentation process. This study aimed to evaluate the probiotics properties and antioxidant activity of yeast strains isolated from spontaneous cocoa fermentation in Sukabumi, Indonesia. Previous research has isolated 23 yeast strains from spontaneous cocoa (Theobroma cacao L.) fermentation. Of the 23 yeast strains isolated from cocoa fermentation, 22 strains showed negative hemolysis as an indicator of non-pathogenic properties. Ten yeast strains were able to grow at 37 °C and 41 °C, pH 3, 0.5% bile salts, had autoaggregation ability (63.99-95.33%), and co-aggregation with S. typhimurium ATCC14028 (>80%), as character requirement for probiotic candidates. The genetic identification of the ten yeast strains showed that they were 99% identical to Pichia kudriavzevii. Based on its antioxidant activity, the P. kudriavzevii 2P10 metabolites had the highest percentage of inhibition (68.51%) against DPPH free radicals and resistance to H2O2 oxidative stress up to 3 mM. It can be concluded that P. kudriavzevii 2P10 is a promising probiotic candidate for functional foods and health purposes.