Interpretation of biological experiments changes with evolution of the Gene Ontology and its annotations
Abstract Gene Ontology (GO) enrichment analysis is ubiquitously used for interpreting high throughput molecular data and generating hypotheses about underlying biological phenomena of experiments. However, the two building blocks of this analysis — the ontology and the annotations — evolve rapidly....
Guardado en:
Autores principales: | Aurelie Tomczak, Jonathan M. Mortensen, Rainer Winnenburg, Charles Liu, Dominique T. Alessi, Varsha Swamy, Francesco Vallania, Shane Lofgren, Winston Haynes, Nigam H. Shah, Mark A. Musen, Purvesh Khatri |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2018
|
Materias: | |
Acceso en línea: | https://doaj.org/article/22ec44186f434485be70d5c0e2be2183 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Chapter 9: Analyses using disease ontologies.
por: Nigam H Shah, et al.
Publicado: (2012) -
Leveraging heterogeneity across multiple datasets increases cell-mixture deconvolution accuracy and reduces biological and technical biases
por: Francesco Vallania, et al.
Publicado: (2018) -
ACO2 clinicobiological dataset with extensive phenotype ontology annotation
por: Khadidja Guehlouz, et al.
Publicado: (2021) -
Methods for Aggregating Crowdsourced Ontology-based Item Annotations
por: Andrew Ponomarev
Publicado: (2021) -
Crowdsourcing biocuration: The Community Assessment of Community Annotation with Ontologies (CACAO).
por: Jolene Ramsey, et al.
Publicado: (2021)