Interpretation of biological experiments changes with evolution of the Gene Ontology and its annotations
Abstract Gene Ontology (GO) enrichment analysis is ubiquitously used for interpreting high throughput molecular data and generating hypotheses about underlying biological phenomena of experiments. However, the two building blocks of this analysis — the ontology and the annotations — evolve rapidly....
Enregistré dans:
Auteurs principaux: | Aurelie Tomczak, Jonathan M. Mortensen, Rainer Winnenburg, Charles Liu, Dominique T. Alessi, Varsha Swamy, Francesco Vallania, Shane Lofgren, Winston Haynes, Nigam H. Shah, Mark A. Musen, Purvesh Khatri |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2018
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/22ec44186f434485be70d5c0e2be2183 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Chapter 9: Analyses using disease ontologies.
par: Nigam H Shah, et autres
Publié: (2012) -
Leveraging heterogeneity across multiple datasets increases cell-mixture deconvolution accuracy and reduces biological and technical biases
par: Francesco Vallania, et autres
Publié: (2018) -
ACO2 clinicobiological dataset with extensive phenotype ontology annotation
par: Khadidja Guehlouz, et autres
Publié: (2021) -
Methods for Aggregating Crowdsourced Ontology-based Item Annotations
par: Andrew Ponomarev
Publié: (2021) -
Crowdsourcing biocuration: The Community Assessment of Community Annotation with Ontologies (CACAO).
par: Jolene Ramsey, et autres
Publié: (2021)