Validation of mathematical model with phosphate activation effect by batch (R)-phenylacetylcarbinol biotransformation process utilizing Candida tropicalis pyruvate decarboxylase in phosphate buffer

Abstract The (R)-phenylacetylcarbinol (PAC) batch biotransformation kinetics for partially purified Candida tropicalis TISTR 5350 pyruvate decarboxylase (PDC) were determined to validate a comprehensive mathematical model in 250 mL scale with 250 mM phosphate buffer/pH 7.0. PDC could convert initial...

Full description

Saved in:
Bibliographic Details
Main Authors: Julaluk Khemacheewakul, Siraphat Taesuwan, Rojarej Nunta, Charin Techapun, Yuthana Phimolsiripol, Pornchai Rachtanapun, Kittisak Jantanasakulwong, Kritsadaporn Porninta, Sumeth Sommanee, Chatchadaporn Mahakuntha, Thanongsak Chaiyaso, Phisit Seesuriyachan, Alissara Reungsang, Ngoc Thao Ngan Trinh, Sutee Wangtueai, Sarana Rose Sommano, Noppol Leksawasdi
Format: article
Language:EN
Published: Nature Portfolio 2021
Subjects:
R
Q
Online Access:https://doaj.org/article/25e81d906cd44955a53fa81fbb4ae9f4
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract The (R)-phenylacetylcarbinol (PAC) batch biotransformation kinetics for partially purified Candida tropicalis TISTR 5350 pyruvate decarboxylase (PDC) were determined to validate a comprehensive mathematical model in 250 mL scale with 250 mM phosphate buffer/pH 7.0. PDC could convert initial 100/120 mM benzaldehyde/pyruvate substrates to the statistical significantly highest (p ≤ 0.05) maximum PAC concentration (95.8 ± 0.1 mM) and production rate (0.639 ± 0.001 mM min−1). A parameter search strategy aimed at minimizing overall residual sum of square (RSS T ) based on a system of six ordinary differential equations was applied to PAC biotransformation profiles with initial benzaldehyde/pyruvate concentration of 100/120 and 30/36 mM. Ten important biotransformation kinetic parameters were then elucidated including the zeroth order activation rate constant due to phosphate buffer species (k a ) of (9.38 ±  < 0.01) ×  10–6% relative PDC activity min−1 mM−1. The validation of this model to independent biotransformation kinetics with initial benzaldehyde/pyruvate concentration of 50/60 mM resulted in relatively good fitting with RSS T , mean sum of square error (MSE), and coefficient of determination (R2) values of 662, 17.4, and 0.9863, respectively.