Material-Device-Circuit Co-optimization of 2D Material based FETs for Ultra-Scaled Technology Nodes
Abstract Two-dimensional (2D) material based FETs are being considered for future technology nodes and high performance logic applications. However, a comprehensive assessment of 2D material based FETs has been lacking for high performance logic applications considering appropriate system level figu...
Guardado en:
Autores principales: | , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/3aba0caa895f420b8b71b17ac1ba4519 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:3aba0caa895f420b8b71b17ac1ba4519 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:3aba0caa895f420b8b71b17ac1ba45192021-12-02T15:06:26ZMaterial-Device-Circuit Co-optimization of 2D Material based FETs for Ultra-Scaled Technology Nodes10.1038/s41598-017-04055-32045-2322https://doaj.org/article/3aba0caa895f420b8b71b17ac1ba45192017-07-01T00:00:00Zhttps://doi.org/10.1038/s41598-017-04055-3https://doaj.org/toc/2045-2322Abstract Two-dimensional (2D) material based FETs are being considered for future technology nodes and high performance logic applications. However, a comprehensive assessment of 2D material based FETs has been lacking for high performance logic applications considering appropriate system level figure-of-merits (FOMs) e.g. delay, and energy-delay product. In this paper, we present guidelines for 2D material based FETs to meet sub-10 nm high performance logic requirements focusing on material requirement, device design, energy-delay optimization for the first time. We show the need for 2D materials with smaller effective mass in the transport direction and anisotropicity to meet the performance requirement for future technology nodes. We present novel device designs with one such 2D material (monolayer black-phosphorus) to keep Moore’s alive for the HP logic in sub-5 nm gate length regime. With these device proposals we show that below 5 nm gate lengths 2D electrostatistics arising from gate stack design becomes more of a challenge than direct source-to-drain tunneling for 2D material-based FETs. Therefore, it is challenging to meet both delay and energy-delay requirement in sub-5 nm gate length regime without scaling both supply voltage (V DD ) and effective-oxide-thickness (EOT) below 0.5 V and 0.5 nm respectively.Tarun kumar AgarwalBart SoreeIuliana RaduPraveen RaghavanGiuseppe IannacconeGianluca FioriWim DehaeneMarc HeynsNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 7, Iss 1, Pp 1-7 (2017) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Tarun kumar Agarwal Bart Soree Iuliana Radu Praveen Raghavan Giuseppe Iannaccone Gianluca Fiori Wim Dehaene Marc Heyns Material-Device-Circuit Co-optimization of 2D Material based FETs for Ultra-Scaled Technology Nodes |
description |
Abstract Two-dimensional (2D) material based FETs are being considered for future technology nodes and high performance logic applications. However, a comprehensive assessment of 2D material based FETs has been lacking for high performance logic applications considering appropriate system level figure-of-merits (FOMs) e.g. delay, and energy-delay product. In this paper, we present guidelines for 2D material based FETs to meet sub-10 nm high performance logic requirements focusing on material requirement, device design, energy-delay optimization for the first time. We show the need for 2D materials with smaller effective mass in the transport direction and anisotropicity to meet the performance requirement for future technology nodes. We present novel device designs with one such 2D material (monolayer black-phosphorus) to keep Moore’s alive for the HP logic in sub-5 nm gate length regime. With these device proposals we show that below 5 nm gate lengths 2D electrostatistics arising from gate stack design becomes more of a challenge than direct source-to-drain tunneling for 2D material-based FETs. Therefore, it is challenging to meet both delay and energy-delay requirement in sub-5 nm gate length regime without scaling both supply voltage (V DD ) and effective-oxide-thickness (EOT) below 0.5 V and 0.5 nm respectively. |
format |
article |
author |
Tarun kumar Agarwal Bart Soree Iuliana Radu Praveen Raghavan Giuseppe Iannaccone Gianluca Fiori Wim Dehaene Marc Heyns |
author_facet |
Tarun kumar Agarwal Bart Soree Iuliana Radu Praveen Raghavan Giuseppe Iannaccone Gianluca Fiori Wim Dehaene Marc Heyns |
author_sort |
Tarun kumar Agarwal |
title |
Material-Device-Circuit Co-optimization of 2D Material based FETs for Ultra-Scaled Technology Nodes |
title_short |
Material-Device-Circuit Co-optimization of 2D Material based FETs for Ultra-Scaled Technology Nodes |
title_full |
Material-Device-Circuit Co-optimization of 2D Material based FETs for Ultra-Scaled Technology Nodes |
title_fullStr |
Material-Device-Circuit Co-optimization of 2D Material based FETs for Ultra-Scaled Technology Nodes |
title_full_unstemmed |
Material-Device-Circuit Co-optimization of 2D Material based FETs for Ultra-Scaled Technology Nodes |
title_sort |
material-device-circuit co-optimization of 2d material based fets for ultra-scaled technology nodes |
publisher |
Nature Portfolio |
publishDate |
2017 |
url |
https://doaj.org/article/3aba0caa895f420b8b71b17ac1ba4519 |
work_keys_str_mv |
AT tarunkumaragarwal materialdevicecircuitcooptimizationof2dmaterialbasedfetsforultrascaledtechnologynodes AT bartsoree materialdevicecircuitcooptimizationof2dmaterialbasedfetsforultrascaledtechnologynodes AT iulianaradu materialdevicecircuitcooptimizationof2dmaterialbasedfetsforultrascaledtechnologynodes AT praveenraghavan materialdevicecircuitcooptimizationof2dmaterialbasedfetsforultrascaledtechnologynodes AT giuseppeiannaccone materialdevicecircuitcooptimizationof2dmaterialbasedfetsforultrascaledtechnologynodes AT gianlucafiori materialdevicecircuitcooptimizationof2dmaterialbasedfetsforultrascaledtechnologynodes AT wimdehaene materialdevicecircuitcooptimizationof2dmaterialbasedfetsforultrascaledtechnologynodes AT marcheyns materialdevicecircuitcooptimizationof2dmaterialbasedfetsforultrascaledtechnologynodes |
_version_ |
1718388442943979520 |