Evaluation of the machine learning classifier in wafer defects classification
In this paper, an evaluation of machine learning classifiers to be applied in wafer defect detection is described. The objective is to establish the best machine learning classifier for Wafer Defect Detection application. k-Nearest Neighbours (k-NN), Logistic Regression, Stochastic Gradient Descent,...
Guardado en:
Autores principales: | Jessnor Arif Mat Jizat, Anwar P.P. Abdul Majeed, Ahmad Fakhri Ab. Nasir, Zahari Taha, Edmund Yuen |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/567f65f56f124228831b6f31d2f5757e |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
An effective approach for identifying defective critical fabrication path
por: Kamal Taha
Publicado: (2019) -
Analysis of Gradient Vanishing of RNNs and Performance Comparison
por: Seol-Hyun Noh
Publicado: (2021) -
Analisa Performa Penggunaan Feature Selection untuk Mendeteksi Intrusion Detection Systems dengan Algoritma Random Forest Classifier
por: Setiawan Budiman, et al.
Publicado: (2021) -
The classification of EEG-based wink signals: A CWT-Transfer Learning pipeline
por: Jothi Letchumy Mahendra Kumar, et al.
Publicado: (2021) -
Obtainment of Residual Stress Distribution from Surface Deformation under Continuity Constraints for Thinned Silicon Wafers
por: Haijun Liu, et al.
Publicado: (2021)