Machine learning based energy-free structure predictions of molecules, transition states, and solids

Accurate computational prediction of atomistic structure with traditional methods is challenging. The authors report a kernel-based machine learning model capable of reconstructing 3D atomic coordinates from predicted interatomic distances across a variety of system classes.

Enregistré dans:
Détails bibliographiques
Auteurs principaux: Dominik Lemm, Guido Falk von Rudorff, O. Anatole von Lilienfeld
Format: article
Langue:EN
Publié: Nature Portfolio 2021
Sujets:
Q
Accès en ligne:https://doaj.org/article/63dbdfe92c2f4710af3a11c94b9cdfc4
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!