Patient-specific cancer genes contribute to recurrently perturbed pathways and establish therapeutic vulnerabilities in esophageal adenocarcinoma

Identifying driver genes in unstable, heterogenous tumour types can be challenging. Here, Mourikis, Benedetti, Foxall and colleagues present a machine learning algorithm to tackle this problem in esophageal adenocarcinoma.

Enregistré dans:
Détails bibliographiques
Auteurs principaux: Thanos P. Mourikis, Lorena Benedetti, Elizabeth Foxall, Damjan Temelkovski, Joel Nulsen, Juliane Perner, Matteo Cereda, Jesper Lagergren, Michael Howell, Christopher Yau, Rebecca C. Fitzgerald, Paola Scaffidi, The Oesophageal Cancer Clinical and Molecular Stratification (OCCAMS) Consortium, Francesca D. Ciccarelli
Format: article
Langue:EN
Publié: Nature Portfolio 2019
Sujets:
Q
Accès en ligne:https://doaj.org/article/6525c04e989d4f92801eb2e25637bf6b
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!