Patient-specific cancer genes contribute to recurrently perturbed pathways and establish therapeutic vulnerabilities in esophageal adenocarcinoma

Identifying driver genes in unstable, heterogenous tumour types can be challenging. Here, Mourikis, Benedetti, Foxall and colleagues present a machine learning algorithm to tackle this problem in esophageal adenocarcinoma.

Guardado en:
Detalles Bibliográficos
Autores principales: Thanos P. Mourikis, Lorena Benedetti, Elizabeth Foxall, Damjan Temelkovski, Joel Nulsen, Juliane Perner, Matteo Cereda, Jesper Lagergren, Michael Howell, Christopher Yau, Rebecca C. Fitzgerald, Paola Scaffidi, The Oesophageal Cancer Clinical and Molecular Stratification (OCCAMS) Consortium, Francesca D. Ciccarelli
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2019
Materias:
Q
Acceso en línea:https://doaj.org/article/6525c04e989d4f92801eb2e25637bf6b
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Identifying driver genes in unstable, heterogenous tumour types can be challenging. Here, Mourikis, Benedetti, Foxall and colleagues present a machine learning algorithm to tackle this problem in esophageal adenocarcinoma.