Patient-specific cancer genes contribute to recurrently perturbed pathways and establish therapeutic vulnerabilities in esophageal adenocarcinoma
Identifying driver genes in unstable, heterogenous tumour types can be challenging. Here, Mourikis, Benedetti, Foxall and colleagues present a machine learning algorithm to tackle this problem in esophageal adenocarcinoma.
Guardado en:
Autores principales: | Thanos P. Mourikis, Lorena Benedetti, Elizabeth Foxall, Damjan Temelkovski, Joel Nulsen, Juliane Perner, Matteo Cereda, Jesper Lagergren, Michael Howell, Christopher Yau, Rebecca C. Fitzgerald, Paola Scaffidi, The Oesophageal Cancer Clinical and Molecular Stratification (OCCAMS) Consortium, Francesca D. Ciccarelli |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2019
|
Materias: | |
Acceso en línea: | https://doaj.org/article/6525c04e989d4f92801eb2e25637bf6b |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Patients with genetically heterogeneous synchronous colorectal cancer carry rare damaging germline mutations in immune-related genes
por: Matteo Cereda, et al.
Publicado: (2016) -
Art's Speculative Perturbations
por: Dr. Melissa Freeman
Publicado: (2021) -
PARABOLIC PERTURBATION IN THE FAMILY
por: BOBENRIETH,JUAN
Publicado: (2002) -
The mutREAD method detects mutational signatures from low quantities of cancer DNA
por: Juliane Perner, et al.
Publicado: (2020) -
Chern-Simons perturbative series revisited
por: E. Lanina, et al.
Publicado: (2021)