Using a Concept Inventory to Reveal Student Thinking Associated with Common Misconceptions about Antibiotic Resistance

Misconceptions, also known as alternate conceptions, about key concepts often hinder the ability of students to learn new knowledge. Concept inventories (CIs) are designed to assess students’ understanding of key concepts, especially those prone to misconceptions. Two-tiered CIs include prompts that...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Ann M. Stevens, Ann C. Smith, Gili Marbach-Ad, Sarah A. Balcom, John Buchner, Sandra L. Daniel, Jeffrey J. DeStefano, Najib M. El-Sayed, Kenneth Frauwirth, Vincent T. Lee, Kevin S. McIver, Stephen B. Melville, David M. Mosser, David L. Popham, Birgit E. Scharf, Florian D. Schubot, Richard W. Seyler, Patricia Ann Shields, Wenxia Song, Daniel C. Stein, Richard C. Stewart, Katerina V. Thompson, Zhaomin Yang, Stephanie A. Yarwood
Formato: article
Lenguaje:EN
Publicado: American Society for Microbiology 2017
Materias:
Acceso en línea:https://doaj.org/article/6a3203f4342c4b76af586e7503688783
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Misconceptions, also known as alternate conceptions, about key concepts often hinder the ability of students to learn new knowledge. Concept inventories (CIs) are designed to assess students’ understanding of key concepts, especially those prone to misconceptions. Two-tiered CIs include prompts that ask students to explain the logic behind their answer choice. Such two-tiered CIs afford an opportunity for faculty to explore the student thinking behind the common misconceptions represented by their choice of a distractor. In this study, we specifically sought to probe the misconceptions that students hold prior to beginning an introductory microbiology course (i.e., preconceptions). Faculty-learning communities at two research-intensive universities used the validated Host-Pathogen Interaction Concept Inventory (HPI-CI) to reveal student preconceptions. Our method of deep analysis involved communal review and discussion of students’ explanations for their CI answer choice. This approach provided insight valuable for curriculum development. Here the process is illustrated using one question from the HPI-CI related to the important topic of antibiotic resistance. The frequencies with which students chose particular multiple-choice responses for this question were highly correlated between institutions, implying common underlying misconceptions. Examination of student explanations using our analysis approach, coupled with group discussions within and between institutions, revealed patterns in student thinking to the participating faculty. Similar application of a two-tiered concept inventory by general microbiology instructors, either individually or in groups, at other institutions will allow them to better understand student thinking related to key concepts in their curriculum.