Goldmann tonometry tear film error and partial correction with a shaped applanation surface

Sean J McCafferty,1–4 Eniko T Enikov,5 Jim Schwiegerling,2,3 Sean M Ashley1,3 1Intuor Technologies, 2Department of Ophthalmology, University of Arizona College of Medicine, 3University of Arizona College of Optical Science, 4Arizona Eye Consultants, 5Department of Mechanical and Aerospace...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: McCafferty SJ, Enikov ET, Schwiegerling J, Ashley SM
Formato: article
Lenguaje:EN
Publicado: Dove Medical Press 2018
Materias:
IOP
Acceso en línea:https://doaj.org/article/6c00108444044fcface53039c1413810
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Sean J McCafferty,1–4 Eniko T Enikov,5 Jim Schwiegerling,2,3 Sean M Ashley1,3 1Intuor Technologies, 2Department of Ophthalmology, University of Arizona College of Medicine, 3University of Arizona College of Optical Science, 4Arizona Eye Consultants, 5Department of Mechanical and Aerospace, University of Arizona College of Engineering, Tucson, AZ, USA Purpose: The aim of the study was to quantify the isolated tear film adhesion error in a Goldmann applanation tonometer (GAT) prism and in a correcting applanation tonometry surface (CATS) prism.Methods: The separation force of a tonometer prism adhered by a tear film to a simulated cornea was measured to quantify an isolated tear film adhesion force. Acrylic hemispheres (7.8 mm radius) used as corneas were lathed over the apical 3.06 mm diameter to simulate full applanation contact with the prism surface for both GAT and CATS prisms. Tear film separation measurements were completed with both an artificial tear and fluorescein solutions as a fluid bridge. The applanation mire thicknesses were measured and correlated with the tear film separation measurements. Human cadaver eyes were used to validate simulated cornea tear film separation measurement differences between the GAT and CATS prisms.Results: The CATS prism tear film adhesion error (2.74±0.21 mmHg) was significantly less than the GAT prism (4.57±0.18 mmHg, p<0.001). Tear film adhesion error was independent of applanation mire thickness (R2=0.09, p=0.04). Fluorescein produces more tear film error than artificial tears (+0.51±0.04 mmHg; p<0.001). Cadaver eye validation indicated the CATS prism’s tear film adhesion error (1.40±0.51 mmHg) was significantly less than that of the GAT prism (3.30±0.38 mmHg; p=0.002).Conclusion: Measured GAT tear film adhesion error is more than previously predicted. A CATS prism significantly reduced tear film adhesion error by ~41%. Fluorescein solution increases the tear film adhesion compared to artificial tears, while mire thickness has a negligible effect. Keywords: glaucoma, intraocular pressure, IOP, Goldmann, bias, error, tonometer, applanation, tear film