Terahertz time-domain ellipsometry with high precision for the evaluation of GaN crystals with carrier densities up to 1020 cm−3

Abstract Gallium nitride (GaN) is one of the most technologically important semiconductors and a fundamental component in many optoelectronic and power devices. Low-resistivity GaN wafers are in demand and actively being developed to improve the performance of vertical GaN power devices necessary fo...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Verdad C. Agulto, Toshiyuki Iwamoto, Hideaki Kitahara, Kazuhiro Toya, Valynn Katrine Mag-usara, Masayuki Imanishi, Yusuke Mori, Masashi Yoshimura, Makoto Nakajima
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/763dd210632d425e936ddcb1a042cc24
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract Gallium nitride (GaN) is one of the most technologically important semiconductors and a fundamental component in many optoelectronic and power devices. Low-resistivity GaN wafers are in demand and actively being developed to improve the performance of vertical GaN power devices necessary for high-voltage and high-frequency applications. For the development of GaN devices, nondestructive characterization of electrical properties particularly for carrier densities in the order of 1019 cm−3 or higher is highly favorable. In this study, we investigated GaN single crystals with different carrier densities of up to 1020 cm−3 using THz time-domain ellipsometry in reflection configuration. The p- and s-polarized THz waves reflected off the GaN samples are measured and then corrected based on the analysis of multiple waveforms measured with a rotating analyzer. We show that performing such analysis leads to a ten times higher precision than by merely measuring the polarization components. As a result, the carrier density and mobility parameters can be unambiguously determined even at high conductivities.