Remote drain inspection framework using the convolutional neural network and re-configurable robot Raptor
Abstract Drain blockage is a crucial problem in the urban environment. It heavily affects the ecosystem and human health. Hence, routine drain inspection is essential for urban environment. Manual drain inspection is a tedious task and prone to accidents and water-borne diseases. This work presents...
Guardado en:
Autores principales: | Lee Ming Jun Melvin, Rajesh Elara Mohan, Archana Semwal, Povendhan Palanisamy, Karthikeyan Elangovan, Braulio Félix Gómez, Balakrishnan Ramalingam, Dylan Ng Terntzer |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/7958d0f6fd4b4d489bd94d3cf8b6a4a7 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Drain Structural Defect Detection and Mapping Using AI-Enabled Reconfigurable Robot Raptor and IoRT Framework
por: Povendhan Palanisamy, et al.
Publicado: (2021) -
Assigning the absolute configuration of single aliphatic molecules by visual inspection
por: Daniel Ebeling, et al.
Publicado: (2018) -
Condition Assessment of Subsurface Drained Areas and Investigation of their Operational Efficiency by Field Inspection and Remote Sensing Methods
por: Túri Norbert, et al.
Publicado: (2021) -
Deep Convolutional Neural Network Optimization for Defect Detection in Fabric Inspection
por: Chao-Ching Ho, et al.
Publicado: (2021) - Slovak raptor journal