Optical Properties of GaN-Based Green Light-Emitting Diodes Influenced by Low-Temperature p-GaN Layer
GaN-based green light-emitting diodes (LEDs) with different thicknesses of the low-temperature (LT) p-GaN layer between the last GaN barriers and p-AlGaN electron blocking layer were characterized by photoluminescence (PL) and electroluminescence (EL) spectroscopic methods in the temperature range o...
Saved in:
Main Authors: | , , , , , , , , |
---|---|
Format: | article |
Language: | EN |
Published: |
MDPI AG
2021
|
Subjects: | |
Online Access: | https://doaj.org/article/882077be7b524a95a011fa668b83aa8f |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | GaN-based green light-emitting diodes (LEDs) with different thicknesses of the low-temperature (LT) p-GaN layer between the last GaN barriers and p-AlGaN electron blocking layer were characterized by photoluminescence (PL) and electroluminescence (EL) spectroscopic methods in the temperature range of 6–300 K and injection current range of 0.01–350 mA. Based on the results, we suggest that a 20 nm-thick LT p-GaN layer can effectively prevent indium (In) re-evaporation, improve the quantum-confined Stark effect in the last quantum well (QW) of the active region, and finally reduce the efficiency droop by about 7%. |
---|