MFP‐Net: Multi‐scale feature pyramid network for crowd counting
Abstract Although deep learning has been widely used for dense crowd counting, it still faces two challenges. Firstly, the popular network models are sensitive to scale variance of human head, human occlusions, and complex background due to repeated utilization of vanilla convolution kernels. Second...
Guardado en:
Autores principales: | Tao Lei, Dong Zhang, Risheng Wang, Shuying Li, Weijiang Zhang, Asoke K. Nandi |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Wiley
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/8b12265dc6084314af4d3093b0140ab0 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Learn from Object Counting: Crowd Counting with Meta‐learning
por: Changtong Zan, et al.
Publicado: (2021) -
Multi‐level features extraction network with gating mechanism for crowd counting
por: Xin Zeng, et al.
Publicado: (2021) -
MSR‐FAN: Multi‐scale residual feature‐aware network for crowd counting
por: Haoyu Zhao, et al.
Publicado: (2021) -
Crowd activity recognition in live video streaming via 3D‐ResNet and region graph convolution network
por: Junpeng Kang, et al.
Publicado: (2021) -
Human behaviour recognition with mid‐level representations for crowd understanding and analysis
por: Bangyong Sun, et al.
Publicado: (2021)