Proteomes of <italic toggle="yes">Lactobacillus delbrueckii</italic> subsp. <italic toggle="yes">bulgaricus</italic> LBB.B5 Incubated in Milk at Optimal and Low Temperatures

ABSTRACT We identified the proteins synthesized by Lactobacillus delbrueckii subsp. bulgaricus strain LBB.B5 in laboratory culture medium (MRS) at 37°C and milk at 37 and 4°C. Cell-associated proteins were measured by gel-free, shotgun proteomics using high-performance liquid chromatography coupled...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Xiaochen Yin, Michelle R. Salemi, Brett S. Phinney, Velitchka Gotcheva, Angel Angelov, Maria L. Marco
Formato: article
Lenguaje:EN
Publicado: American Society for Microbiology 2017
Materias:
Acceso en línea:https://doaj.org/article/9c3d93c5fa3442148a44e7f7e6cdc518
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:9c3d93c5fa3442148a44e7f7e6cdc518
record_format dspace
spelling oai:doaj.org-article:9c3d93c5fa3442148a44e7f7e6cdc5182021-12-02T18:15:43ZProteomes of <italic toggle="yes">Lactobacillus delbrueckii</italic> subsp. <italic toggle="yes">bulgaricus</italic> LBB.B5 Incubated in Milk at Optimal and Low Temperatures10.1128/mSystems.00027-172379-5077https://doaj.org/article/9c3d93c5fa3442148a44e7f7e6cdc5182017-10-01T00:00:00Zhttps://journals.asm.org/doi/10.1128/mSystems.00027-17https://doaj.org/toc/2379-5077ABSTRACT We identified the proteins synthesized by Lactobacillus delbrueckii subsp. bulgaricus strain LBB.B5 in laboratory culture medium (MRS) at 37°C and milk at 37 and 4°C. Cell-associated proteins were measured by gel-free, shotgun proteomics using high-performance liquid chromatography coupled with tandem mass spectrophotometry. A total of 635 proteins were recovered from all cultures, among which 72 proteins were milk associated (unique or significantly more abundant in milk). LBB.B5 responded to milk by increasing the production of proteins required for purine biosynthesis, carbohydrate metabolism (LacZ and ManM), energy metabolism (TpiA, PgK, Eno, SdhA, and GapN), amino acid synthesis (MetE, CysK, LBU0412, and AspC) and transport (GlnM and GlnP), and stress response (Trx, MsrA, MecA, and SmpB). The requirement for purines was confirmed by the significantly improved cell yields of L. delbrueckii subsp. bulgaricus when incubated in milk supplemented with adenine and guanine. The L. delbrueckii subsp. bulgaricus-expressed proteome in milk changed upon incubation at 4°C for 5 days and included increased levels of 17 proteins, several of which confer functions in stress tolerance (AddB, UvrC, RecA, and DnaJ). However, even with the activation of stress responses in either milk or MRS, L. delbrueckii subsp. bulgaricus did not survive passage through the murine digestive tract. These findings inform efforts to understand how L. delbrueckii subsp. bulgaricus is adapted to the dairy environment and its implications for its health-benefiting properties in the human digestive tract. IMPORTANCE Lactobacillus delbrueckii subsp. bulgaricus has a long history of use in yogurt production. Although commonly cocultured with Streptococcus salivarius subsp. thermophilus in milk, fundamental knowledge of the adaptive responses of L. delbrueckii subsp. bulgaricus to the dairy environment and the consequences of those responses on the use of L. delbrueckii subsp. bulgaricus as a probiotic remain to be elucidated. In this study, we identified proteins of L. delbrueckii subsp. bulgaricus LBB.B5 that are synthesized in higher quantities in milk at growth-conducive and non-growth-conductive (refrigeration) temperatures compared to laboratory culture medium and further examined whether those L. delbrueckii subsp. bulgaricus cultures were affected differently in their capacity to survive transit through the murine digestive tract. This work provides novel insight into how a major, food-adapted microbe responds to its primary habitat. Such knowledge can be applied to improve starter culture and yogurt production and to elucidate matrix effects on probiotic performance.Xiaochen YinMichelle R. SalemiBrett S. PhinneyVelitchka GotchevaAngel AngelovMaria L. MarcoAmerican Society for MicrobiologyarticleLactobacillusfermentationmammalian gutproteomicsMicrobiologyQR1-502ENmSystems, Vol 2, Iss 5 (2017)
institution DOAJ
collection DOAJ
language EN
topic Lactobacillus
fermentation
mammalian gut
proteomics
Microbiology
QR1-502
spellingShingle Lactobacillus
fermentation
mammalian gut
proteomics
Microbiology
QR1-502
Xiaochen Yin
Michelle R. Salemi
Brett S. Phinney
Velitchka Gotcheva
Angel Angelov
Maria L. Marco
Proteomes of <italic toggle="yes">Lactobacillus delbrueckii</italic> subsp. <italic toggle="yes">bulgaricus</italic> LBB.B5 Incubated in Milk at Optimal and Low Temperatures
description ABSTRACT We identified the proteins synthesized by Lactobacillus delbrueckii subsp. bulgaricus strain LBB.B5 in laboratory culture medium (MRS) at 37°C and milk at 37 and 4°C. Cell-associated proteins were measured by gel-free, shotgun proteomics using high-performance liquid chromatography coupled with tandem mass spectrophotometry. A total of 635 proteins were recovered from all cultures, among which 72 proteins were milk associated (unique or significantly more abundant in milk). LBB.B5 responded to milk by increasing the production of proteins required for purine biosynthesis, carbohydrate metabolism (LacZ and ManM), energy metabolism (TpiA, PgK, Eno, SdhA, and GapN), amino acid synthesis (MetE, CysK, LBU0412, and AspC) and transport (GlnM and GlnP), and stress response (Trx, MsrA, MecA, and SmpB). The requirement for purines was confirmed by the significantly improved cell yields of L. delbrueckii subsp. bulgaricus when incubated in milk supplemented with adenine and guanine. The L. delbrueckii subsp. bulgaricus-expressed proteome in milk changed upon incubation at 4°C for 5 days and included increased levels of 17 proteins, several of which confer functions in stress tolerance (AddB, UvrC, RecA, and DnaJ). However, even with the activation of stress responses in either milk or MRS, L. delbrueckii subsp. bulgaricus did not survive passage through the murine digestive tract. These findings inform efforts to understand how L. delbrueckii subsp. bulgaricus is adapted to the dairy environment and its implications for its health-benefiting properties in the human digestive tract. IMPORTANCE Lactobacillus delbrueckii subsp. bulgaricus has a long history of use in yogurt production. Although commonly cocultured with Streptococcus salivarius subsp. thermophilus in milk, fundamental knowledge of the adaptive responses of L. delbrueckii subsp. bulgaricus to the dairy environment and the consequences of those responses on the use of L. delbrueckii subsp. bulgaricus as a probiotic remain to be elucidated. In this study, we identified proteins of L. delbrueckii subsp. bulgaricus LBB.B5 that are synthesized in higher quantities in milk at growth-conducive and non-growth-conductive (refrigeration) temperatures compared to laboratory culture medium and further examined whether those L. delbrueckii subsp. bulgaricus cultures were affected differently in their capacity to survive transit through the murine digestive tract. This work provides novel insight into how a major, food-adapted microbe responds to its primary habitat. Such knowledge can be applied to improve starter culture and yogurt production and to elucidate matrix effects on probiotic performance.
format article
author Xiaochen Yin
Michelle R. Salemi
Brett S. Phinney
Velitchka Gotcheva
Angel Angelov
Maria L. Marco
author_facet Xiaochen Yin
Michelle R. Salemi
Brett S. Phinney
Velitchka Gotcheva
Angel Angelov
Maria L. Marco
author_sort Xiaochen Yin
title Proteomes of <italic toggle="yes">Lactobacillus delbrueckii</italic> subsp. <italic toggle="yes">bulgaricus</italic> LBB.B5 Incubated in Milk at Optimal and Low Temperatures
title_short Proteomes of <italic toggle="yes">Lactobacillus delbrueckii</italic> subsp. <italic toggle="yes">bulgaricus</italic> LBB.B5 Incubated in Milk at Optimal and Low Temperatures
title_full Proteomes of <italic toggle="yes">Lactobacillus delbrueckii</italic> subsp. <italic toggle="yes">bulgaricus</italic> LBB.B5 Incubated in Milk at Optimal and Low Temperatures
title_fullStr Proteomes of <italic toggle="yes">Lactobacillus delbrueckii</italic> subsp. <italic toggle="yes">bulgaricus</italic> LBB.B5 Incubated in Milk at Optimal and Low Temperatures
title_full_unstemmed Proteomes of <italic toggle="yes">Lactobacillus delbrueckii</italic> subsp. <italic toggle="yes">bulgaricus</italic> LBB.B5 Incubated in Milk at Optimal and Low Temperatures
title_sort proteomes of <italic toggle="yes">lactobacillus delbrueckii</italic> subsp. <italic toggle="yes">bulgaricus</italic> lbb.b5 incubated in milk at optimal and low temperatures
publisher American Society for Microbiology
publishDate 2017
url https://doaj.org/article/9c3d93c5fa3442148a44e7f7e6cdc518
work_keys_str_mv AT xiaochenyin proteomesofitalictoggleyeslactobacillusdelbrueckiiitalicsubspitalictoggleyesbulgaricusitaliclbbb5incubatedinmilkatoptimalandlowtemperatures
AT michellersalemi proteomesofitalictoggleyeslactobacillusdelbrueckiiitalicsubspitalictoggleyesbulgaricusitaliclbbb5incubatedinmilkatoptimalandlowtemperatures
AT brettsphinney proteomesofitalictoggleyeslactobacillusdelbrueckiiitalicsubspitalictoggleyesbulgaricusitaliclbbb5incubatedinmilkatoptimalandlowtemperatures
AT velitchkagotcheva proteomesofitalictoggleyeslactobacillusdelbrueckiiitalicsubspitalictoggleyesbulgaricusitaliclbbb5incubatedinmilkatoptimalandlowtemperatures
AT angelangelov proteomesofitalictoggleyeslactobacillusdelbrueckiiitalicsubspitalictoggleyesbulgaricusitaliclbbb5incubatedinmilkatoptimalandlowtemperatures
AT marialmarco proteomesofitalictoggleyeslactobacillusdelbrueckiiitalicsubspitalictoggleyesbulgaricusitaliclbbb5incubatedinmilkatoptimalandlowtemperatures
_version_ 1718378347841454080