Finitely Supported Binary Relations between Infinite Atomic Sets
In the framework of finitely supported atomic sets, by using the notion of atomic cardinality and the <i>T</i>-finite support principle (a closure property for supports in some higher-order constructions), we present some finiteness properties of the finitely supported binary relations b...
Guardado en:
Autores principales: | , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/9c4e0bdf31f54a5aa85b112a5c6a13a9 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:9c4e0bdf31f54a5aa85b112a5c6a13a9 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:9c4e0bdf31f54a5aa85b112a5c6a13a92021-11-25T19:06:09ZFinitely Supported Binary Relations between Infinite Atomic Sets10.3390/sym131120282073-8994https://doaj.org/article/9c4e0bdf31f54a5aa85b112a5c6a13a92021-10-01T00:00:00Zhttps://www.mdpi.com/2073-8994/13/11/2028https://doaj.org/toc/2073-8994In the framework of finitely supported atomic sets, by using the notion of atomic cardinality and the <i>T</i>-finite support principle (a closure property for supports in some higher-order constructions), we present some finiteness properties of the finitely supported binary relations between infinite atomic sets. Of particular interest are finitely supported Dedekind-finite sets because they do not contain finitely supported, countably infinite subsets. We prove that the infinite sets <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mo>℘</mo><mrow><mi>f</mi><mi>s</mi></mrow></msub><mrow><mo stretchy="false">(</mo><msup><mi>A</mi><mi>k</mi></msup><mo>×</mo><msup><mi>A</mi><mi>l</mi></msup><mo stretchy="false">)</mo></mrow></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mo>℘</mo><mrow><mi>f</mi><mi>s</mi></mrow></msub><mrow><mo stretchy="false">(</mo><msup><mi>A</mi><mi>k</mi></msup><mo>×</mo><msub><mo>℘</mo><mi>m</mi></msub><mrow><mo>(</mo><mi>A</mi><mo>)</mo></mrow><mo stretchy="false">)</mo></mrow></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mo>℘</mo><mrow><mi>f</mi><mi>s</mi></mrow></msub><mrow><mo stretchy="false">(</mo><msub><mo>℘</mo><mi>n</mi></msub><mrow><mo>(</mo><mi>A</mi><mo>)</mo></mrow><mo>×</mo><msup><mi>A</mi><mi>k</mi></msup><mo stretchy="false">)</mo></mrow></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mo>℘</mo><mrow><mi>f</mi><mi>s</mi></mrow></msub><mrow><mo>(</mo><msub><mo>℘</mo><mi>n</mi></msub><mrow><mo>(</mo><mi>A</mi><mo>)</mo></mrow><mo>×</mo><msub><mo>℘</mo><mi>m</mi></msub><mrow><mo>(</mo><mi>A</mi><mo>)</mo></mrow><mo>)</mo></mrow></mrow></semantics></math></inline-formula> do not contain uniformly supported infinite subsets. Moreover, the functions space <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>Z</mi><msup><mi>A</mi><mi>m</mi></msup></msup></semantics></math></inline-formula> does not contain a uniformly supported infinite subset whenever <i>Z</i> does not contain a uniformly supported infinite subset. All these sets are Dedekind-finite in the framework of finitely supported structures.Andrei AlexandruGabriel CiobanuMDPI AGarticlefinitely supported structuresatomic setsrelationscardinalityfiniteness propertiesMathematicsQA1-939ENSymmetry, Vol 13, Iss 2028, p 2028 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
finitely supported structures atomic sets relations cardinality finiteness properties Mathematics QA1-939 |
spellingShingle |
finitely supported structures atomic sets relations cardinality finiteness properties Mathematics QA1-939 Andrei Alexandru Gabriel Ciobanu Finitely Supported Binary Relations between Infinite Atomic Sets |
description |
In the framework of finitely supported atomic sets, by using the notion of atomic cardinality and the <i>T</i>-finite support principle (a closure property for supports in some higher-order constructions), we present some finiteness properties of the finitely supported binary relations between infinite atomic sets. Of particular interest are finitely supported Dedekind-finite sets because they do not contain finitely supported, countably infinite subsets. We prove that the infinite sets <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mo>℘</mo><mrow><mi>f</mi><mi>s</mi></mrow></msub><mrow><mo stretchy="false">(</mo><msup><mi>A</mi><mi>k</mi></msup><mo>×</mo><msup><mi>A</mi><mi>l</mi></msup><mo stretchy="false">)</mo></mrow></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mo>℘</mo><mrow><mi>f</mi><mi>s</mi></mrow></msub><mrow><mo stretchy="false">(</mo><msup><mi>A</mi><mi>k</mi></msup><mo>×</mo><msub><mo>℘</mo><mi>m</mi></msub><mrow><mo>(</mo><mi>A</mi><mo>)</mo></mrow><mo stretchy="false">)</mo></mrow></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mo>℘</mo><mrow><mi>f</mi><mi>s</mi></mrow></msub><mrow><mo stretchy="false">(</mo><msub><mo>℘</mo><mi>n</mi></msub><mrow><mo>(</mo><mi>A</mi><mo>)</mo></mrow><mo>×</mo><msup><mi>A</mi><mi>k</mi></msup><mo stretchy="false">)</mo></mrow></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mo>℘</mo><mrow><mi>f</mi><mi>s</mi></mrow></msub><mrow><mo>(</mo><msub><mo>℘</mo><mi>n</mi></msub><mrow><mo>(</mo><mi>A</mi><mo>)</mo></mrow><mo>×</mo><msub><mo>℘</mo><mi>m</mi></msub><mrow><mo>(</mo><mi>A</mi><mo>)</mo></mrow><mo>)</mo></mrow></mrow></semantics></math></inline-formula> do not contain uniformly supported infinite subsets. Moreover, the functions space <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>Z</mi><msup><mi>A</mi><mi>m</mi></msup></msup></semantics></math></inline-formula> does not contain a uniformly supported infinite subset whenever <i>Z</i> does not contain a uniformly supported infinite subset. All these sets are Dedekind-finite in the framework of finitely supported structures. |
format |
article |
author |
Andrei Alexandru Gabriel Ciobanu |
author_facet |
Andrei Alexandru Gabriel Ciobanu |
author_sort |
Andrei Alexandru |
title |
Finitely Supported Binary Relations between Infinite Atomic Sets |
title_short |
Finitely Supported Binary Relations between Infinite Atomic Sets |
title_full |
Finitely Supported Binary Relations between Infinite Atomic Sets |
title_fullStr |
Finitely Supported Binary Relations between Infinite Atomic Sets |
title_full_unstemmed |
Finitely Supported Binary Relations between Infinite Atomic Sets |
title_sort |
finitely supported binary relations between infinite atomic sets |
publisher |
MDPI AG |
publishDate |
2021 |
url |
https://doaj.org/article/9c4e0bdf31f54a5aa85b112a5c6a13a9 |
work_keys_str_mv |
AT andreialexandru finitelysupportedbinaryrelationsbetweeninfiniteatomicsets AT gabrielciobanu finitelysupportedbinaryrelationsbetweeninfiniteatomicsets |
_version_ |
1718410293921447936 |