Local chromatin fiber folding represses transcription and loop extrusion in quiescent cells

A longstanding hypothesis is that chromatin fiber folding mediated by interactions between nearby nucleosomes represses transcription. However, it has been difficult to determine the relationship between local chromatin fiber compaction and transcription in cells. Further, global changes in fiber di...

Full description

Saved in:
Bibliographic Details
Main Authors: Sarah G Swygert, Dejun Lin, Stephanie Portillo-Ledesma, Po-Yen Lin, Dakota R Hunt, Cheng-Fu Kao, Tamar Schlick, William S Noble, Toshio Tsukiyama
Format: article
Language:EN
Published: eLife Sciences Publications Ltd 2021
Subjects:
R
Q
Online Access:https://doaj.org/article/a270fb6c58b2464c9542e207b7d77cab
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A longstanding hypothesis is that chromatin fiber folding mediated by interactions between nearby nucleosomes represses transcription. However, it has been difficult to determine the relationship between local chromatin fiber compaction and transcription in cells. Further, global changes in fiber diameters have not been observed, even between interphase and mitotic chromosomes. We show that an increase in the range of local inter-nucleosomal contacts in quiescent yeast drives the compaction of chromatin fibers genome-wide. Unlike actively dividing cells, inter-nucleosomal interactions in quiescent cells require a basic patch in the histone H4 tail. This quiescence-specific fiber folding globally represses transcription and inhibits chromatin loop extrusion by condensin. These results reveal that global changes in chromatin fiber compaction can occur during cell state transitions, and establish physiological roles for local chromatin fiber folding in regulating transcription and chromatin domain formation.