CRISPR/Cas9-mediated genome editing via postnatal administration of AAV vector cures haemophilia B mice

Abstract Haemophilia B, a congenital haemorrhagic disease caused by mutations in coagulation factor IX gene (F9), is considered an appropriate target for genome editing technology. Here, we describe treatment strategies for haemophilia B mice using the clustered regularly interspaced short palindrom...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Tsukasa Ohmori, Yasumitsu Nagao, Hiroaki Mizukami, Asuka Sakata, Shin-ichi Muramatsu, Keiya Ozawa, Shin-ichi Tominaga, Yutaka Hanazono, Satoshi Nishimura, Osamu Nureki, Yoichi Sakata
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2017
Materias:
R
Q
Acceso en línea:https://doaj.org/article/b79acbb0c9004973b1526e004ab7e566
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:b79acbb0c9004973b1526e004ab7e566
record_format dspace
spelling oai:doaj.org-article:b79acbb0c9004973b1526e004ab7e5662021-12-02T16:06:38ZCRISPR/Cas9-mediated genome editing via postnatal administration of AAV vector cures haemophilia B mice10.1038/s41598-017-04625-52045-2322https://doaj.org/article/b79acbb0c9004973b1526e004ab7e5662017-06-01T00:00:00Zhttps://doi.org/10.1038/s41598-017-04625-5https://doaj.org/toc/2045-2322Abstract Haemophilia B, a congenital haemorrhagic disease caused by mutations in coagulation factor IX gene (F9), is considered an appropriate target for genome editing technology. Here, we describe treatment strategies for haemophilia B mice using the clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 system. Administration of adeno-associated virus (AAV) 8 vector harbouring Staphylococcus aureus Cas9 (SaCas9) and single guide RNA (sgRNA) to wild-type adult mice induced a double-strand break (DSB) at the target site of F9 in hepatocytes, sufficiently developing haemophilia B. Mutation-specific gene editing by simultaneous induction of homology-directed repair (HDR) sufficiently increased FIX levels to correct the disease phenotype. Insertion of F9 cDNA into the intron more efficiently restored haemostasis via both processes of non-homologous end-joining (NHEJ) and HDR following DSB. Notably, these therapies also cured neonate mice with haemophilia, which cannot be achieved with conventional gene therapy with AAV vector. Ongoing haemophilia therapy targeting the antithrombin gene with antisense oligonucleotide could be replaced by SaCas9/sgRNA-expressing AAV8 vector. Our results suggest that CRISPR/Cas9-mediated genome editing using an AAV8 vector provides a flexible approach to induce DSB at target genes in hepatocytes and could be a good strategy for haemophilia gene therapy.Tsukasa OhmoriYasumitsu NagaoHiroaki MizukamiAsuka SakataShin-ichi MuramatsuKeiya OzawaShin-ichi TominagaYutaka HanazonoSatoshi NishimuraOsamu NurekiYoichi SakataNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 7, Iss 1, Pp 1-11 (2017)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Tsukasa Ohmori
Yasumitsu Nagao
Hiroaki Mizukami
Asuka Sakata
Shin-ichi Muramatsu
Keiya Ozawa
Shin-ichi Tominaga
Yutaka Hanazono
Satoshi Nishimura
Osamu Nureki
Yoichi Sakata
CRISPR/Cas9-mediated genome editing via postnatal administration of AAV vector cures haemophilia B mice
description Abstract Haemophilia B, a congenital haemorrhagic disease caused by mutations in coagulation factor IX gene (F9), is considered an appropriate target for genome editing technology. Here, we describe treatment strategies for haemophilia B mice using the clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 system. Administration of adeno-associated virus (AAV) 8 vector harbouring Staphylococcus aureus Cas9 (SaCas9) and single guide RNA (sgRNA) to wild-type adult mice induced a double-strand break (DSB) at the target site of F9 in hepatocytes, sufficiently developing haemophilia B. Mutation-specific gene editing by simultaneous induction of homology-directed repair (HDR) sufficiently increased FIX levels to correct the disease phenotype. Insertion of F9 cDNA into the intron more efficiently restored haemostasis via both processes of non-homologous end-joining (NHEJ) and HDR following DSB. Notably, these therapies also cured neonate mice with haemophilia, which cannot be achieved with conventional gene therapy with AAV vector. Ongoing haemophilia therapy targeting the antithrombin gene with antisense oligonucleotide could be replaced by SaCas9/sgRNA-expressing AAV8 vector. Our results suggest that CRISPR/Cas9-mediated genome editing using an AAV8 vector provides a flexible approach to induce DSB at target genes in hepatocytes and could be a good strategy for haemophilia gene therapy.
format article
author Tsukasa Ohmori
Yasumitsu Nagao
Hiroaki Mizukami
Asuka Sakata
Shin-ichi Muramatsu
Keiya Ozawa
Shin-ichi Tominaga
Yutaka Hanazono
Satoshi Nishimura
Osamu Nureki
Yoichi Sakata
author_facet Tsukasa Ohmori
Yasumitsu Nagao
Hiroaki Mizukami
Asuka Sakata
Shin-ichi Muramatsu
Keiya Ozawa
Shin-ichi Tominaga
Yutaka Hanazono
Satoshi Nishimura
Osamu Nureki
Yoichi Sakata
author_sort Tsukasa Ohmori
title CRISPR/Cas9-mediated genome editing via postnatal administration of AAV vector cures haemophilia B mice
title_short CRISPR/Cas9-mediated genome editing via postnatal administration of AAV vector cures haemophilia B mice
title_full CRISPR/Cas9-mediated genome editing via postnatal administration of AAV vector cures haemophilia B mice
title_fullStr CRISPR/Cas9-mediated genome editing via postnatal administration of AAV vector cures haemophilia B mice
title_full_unstemmed CRISPR/Cas9-mediated genome editing via postnatal administration of AAV vector cures haemophilia B mice
title_sort crispr/cas9-mediated genome editing via postnatal administration of aav vector cures haemophilia b mice
publisher Nature Portfolio
publishDate 2017
url https://doaj.org/article/b79acbb0c9004973b1526e004ab7e566
work_keys_str_mv AT tsukasaohmori crisprcas9mediatedgenomeeditingviapostnataladministrationofaavvectorcureshaemophiliabmice
AT yasumitsunagao crisprcas9mediatedgenomeeditingviapostnataladministrationofaavvectorcureshaemophiliabmice
AT hiroakimizukami crisprcas9mediatedgenomeeditingviapostnataladministrationofaavvectorcureshaemophiliabmice
AT asukasakata crisprcas9mediatedgenomeeditingviapostnataladministrationofaavvectorcureshaemophiliabmice
AT shinichimuramatsu crisprcas9mediatedgenomeeditingviapostnataladministrationofaavvectorcureshaemophiliabmice
AT keiyaozawa crisprcas9mediatedgenomeeditingviapostnataladministrationofaavvectorcureshaemophiliabmice
AT shinichitominaga crisprcas9mediatedgenomeeditingviapostnataladministrationofaavvectorcureshaemophiliabmice
AT yutakahanazono crisprcas9mediatedgenomeeditingviapostnataladministrationofaavvectorcureshaemophiliabmice
AT satoshinishimura crisprcas9mediatedgenomeeditingviapostnataladministrationofaavvectorcureshaemophiliabmice
AT osamunureki crisprcas9mediatedgenomeeditingviapostnataladministrationofaavvectorcureshaemophiliabmice
AT yoichisakata crisprcas9mediatedgenomeeditingviapostnataladministrationofaavvectorcureshaemophiliabmice
_version_ 1718384926097670144