CRISPR/Cas9-mediated genome editing via postnatal administration of AAV vector cures haemophilia B mice
Abstract Haemophilia B, a congenital haemorrhagic disease caused by mutations in coagulation factor IX gene (F9), is considered an appropriate target for genome editing technology. Here, we describe treatment strategies for haemophilia B mice using the clustered regularly interspaced short palindrom...
Guardado en:
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/b79acbb0c9004973b1526e004ab7e566 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:b79acbb0c9004973b1526e004ab7e566 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:b79acbb0c9004973b1526e004ab7e5662021-12-02T16:06:38ZCRISPR/Cas9-mediated genome editing via postnatal administration of AAV vector cures haemophilia B mice10.1038/s41598-017-04625-52045-2322https://doaj.org/article/b79acbb0c9004973b1526e004ab7e5662017-06-01T00:00:00Zhttps://doi.org/10.1038/s41598-017-04625-5https://doaj.org/toc/2045-2322Abstract Haemophilia B, a congenital haemorrhagic disease caused by mutations in coagulation factor IX gene (F9), is considered an appropriate target for genome editing technology. Here, we describe treatment strategies for haemophilia B mice using the clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 system. Administration of adeno-associated virus (AAV) 8 vector harbouring Staphylococcus aureus Cas9 (SaCas9) and single guide RNA (sgRNA) to wild-type adult mice induced a double-strand break (DSB) at the target site of F9 in hepatocytes, sufficiently developing haemophilia B. Mutation-specific gene editing by simultaneous induction of homology-directed repair (HDR) sufficiently increased FIX levels to correct the disease phenotype. Insertion of F9 cDNA into the intron more efficiently restored haemostasis via both processes of non-homologous end-joining (NHEJ) and HDR following DSB. Notably, these therapies also cured neonate mice with haemophilia, which cannot be achieved with conventional gene therapy with AAV vector. Ongoing haemophilia therapy targeting the antithrombin gene with antisense oligonucleotide could be replaced by SaCas9/sgRNA-expressing AAV8 vector. Our results suggest that CRISPR/Cas9-mediated genome editing using an AAV8 vector provides a flexible approach to induce DSB at target genes in hepatocytes and could be a good strategy for haemophilia gene therapy.Tsukasa OhmoriYasumitsu NagaoHiroaki MizukamiAsuka SakataShin-ichi MuramatsuKeiya OzawaShin-ichi TominagaYutaka HanazonoSatoshi NishimuraOsamu NurekiYoichi SakataNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 7, Iss 1, Pp 1-11 (2017) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Tsukasa Ohmori Yasumitsu Nagao Hiroaki Mizukami Asuka Sakata Shin-ichi Muramatsu Keiya Ozawa Shin-ichi Tominaga Yutaka Hanazono Satoshi Nishimura Osamu Nureki Yoichi Sakata CRISPR/Cas9-mediated genome editing via postnatal administration of AAV vector cures haemophilia B mice |
description |
Abstract Haemophilia B, a congenital haemorrhagic disease caused by mutations in coagulation factor IX gene (F9), is considered an appropriate target for genome editing technology. Here, we describe treatment strategies for haemophilia B mice using the clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 system. Administration of adeno-associated virus (AAV) 8 vector harbouring Staphylococcus aureus Cas9 (SaCas9) and single guide RNA (sgRNA) to wild-type adult mice induced a double-strand break (DSB) at the target site of F9 in hepatocytes, sufficiently developing haemophilia B. Mutation-specific gene editing by simultaneous induction of homology-directed repair (HDR) sufficiently increased FIX levels to correct the disease phenotype. Insertion of F9 cDNA into the intron more efficiently restored haemostasis via both processes of non-homologous end-joining (NHEJ) and HDR following DSB. Notably, these therapies also cured neonate mice with haemophilia, which cannot be achieved with conventional gene therapy with AAV vector. Ongoing haemophilia therapy targeting the antithrombin gene with antisense oligonucleotide could be replaced by SaCas9/sgRNA-expressing AAV8 vector. Our results suggest that CRISPR/Cas9-mediated genome editing using an AAV8 vector provides a flexible approach to induce DSB at target genes in hepatocytes and could be a good strategy for haemophilia gene therapy. |
format |
article |
author |
Tsukasa Ohmori Yasumitsu Nagao Hiroaki Mizukami Asuka Sakata Shin-ichi Muramatsu Keiya Ozawa Shin-ichi Tominaga Yutaka Hanazono Satoshi Nishimura Osamu Nureki Yoichi Sakata |
author_facet |
Tsukasa Ohmori Yasumitsu Nagao Hiroaki Mizukami Asuka Sakata Shin-ichi Muramatsu Keiya Ozawa Shin-ichi Tominaga Yutaka Hanazono Satoshi Nishimura Osamu Nureki Yoichi Sakata |
author_sort |
Tsukasa Ohmori |
title |
CRISPR/Cas9-mediated genome editing via postnatal administration of AAV vector cures haemophilia B mice |
title_short |
CRISPR/Cas9-mediated genome editing via postnatal administration of AAV vector cures haemophilia B mice |
title_full |
CRISPR/Cas9-mediated genome editing via postnatal administration of AAV vector cures haemophilia B mice |
title_fullStr |
CRISPR/Cas9-mediated genome editing via postnatal administration of AAV vector cures haemophilia B mice |
title_full_unstemmed |
CRISPR/Cas9-mediated genome editing via postnatal administration of AAV vector cures haemophilia B mice |
title_sort |
crispr/cas9-mediated genome editing via postnatal administration of aav vector cures haemophilia b mice |
publisher |
Nature Portfolio |
publishDate |
2017 |
url |
https://doaj.org/article/b79acbb0c9004973b1526e004ab7e566 |
work_keys_str_mv |
AT tsukasaohmori crisprcas9mediatedgenomeeditingviapostnataladministrationofaavvectorcureshaemophiliabmice AT yasumitsunagao crisprcas9mediatedgenomeeditingviapostnataladministrationofaavvectorcureshaemophiliabmice AT hiroakimizukami crisprcas9mediatedgenomeeditingviapostnataladministrationofaavvectorcureshaemophiliabmice AT asukasakata crisprcas9mediatedgenomeeditingviapostnataladministrationofaavvectorcureshaemophiliabmice AT shinichimuramatsu crisprcas9mediatedgenomeeditingviapostnataladministrationofaavvectorcureshaemophiliabmice AT keiyaozawa crisprcas9mediatedgenomeeditingviapostnataladministrationofaavvectorcureshaemophiliabmice AT shinichitominaga crisprcas9mediatedgenomeeditingviapostnataladministrationofaavvectorcureshaemophiliabmice AT yutakahanazono crisprcas9mediatedgenomeeditingviapostnataladministrationofaavvectorcureshaemophiliabmice AT satoshinishimura crisprcas9mediatedgenomeeditingviapostnataladministrationofaavvectorcureshaemophiliabmice AT osamunureki crisprcas9mediatedgenomeeditingviapostnataladministrationofaavvectorcureshaemophiliabmice AT yoichisakata crisprcas9mediatedgenomeeditingviapostnataladministrationofaavvectorcureshaemophiliabmice |
_version_ |
1718384926097670144 |