Rheological behavior of honey adulterated with agave, maple, corn, rice and inverted sugar syrups

Abstract The aim of this study was to assess the influence of different adulteration agents (agave, maple, corn, rice and inverted sugar) on honey rheology. There was studied the influence of different percentages of adulteration agent on steady state and dynamic state rheology but also on rheology...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Paula Ciursa, Mircea Oroian
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/bfde2305035948238b45b185f0d53000
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract The aim of this study was to assess the influence of different adulteration agents (agave, maple, corn, rice and inverted sugar) on honey rheology. There was studied the influence of different percentages of adulteration agent on steady state and dynamic state rheology but also on rheology in the negative temperature domain. The authentic honey and adulterated ones behaved as a Newtonian fluid with a liquid-like behavior (Gʺ>>Gʹ). Regarding the physicochemical parameters analyzed (moisture and sugar content), significant changes depending on the adulteration agent/degree used were observed. The viscoelastical parameters (η*—complex viscosity, Gʹ —elastic modulus and Gʺ—viscous modulus) and glass transition temperature (Tg) were predicted in function of the chemical composition (moisture content, glucose, fructose, sucrose, maltose, raffinose, trehalose, turanose, melesitose, and F/G ratio) using the PLS-R (partial least square regression). All parameters analyzed had a high regression coefficient for calibration (> 0.810) and validation (> 0.790), except for the elastic modulus.