MicroRNA-1915-3p inhibits cell migration and invasion by targeting SET in non-small-cell lung cancer

Abstract Background MicroRNAs (miRNAs) have been reported to play significant roles in non-small-cell lung cancer (NSCLC). However, the roles of microRNA (miR)-1915-3p in NSCLC remain unclear. In this study, we aimed to explore the biological functions of miR-1915-3p in NSCLC. Methods The expression...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Hongli Pan, Zhenhua Pan, Fengjie Guo, Fanrong Meng, Lingling Zu, Yaguang Fan, Yang Li, Mengjie Li, Xinxin Du, Xiuwen Zhang, Yi Shao, Mingming Wei, Xuebing Li, Qinghua Zhou
Formato: article
Lenguaje:EN
Publicado: BMC 2021
Materias:
SET
Acceso en línea:https://doaj.org/article/c7ef73183b9c4453afa82643468b845d
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract Background MicroRNAs (miRNAs) have been reported to play significant roles in non-small-cell lung cancer (NSCLC). However, the roles of microRNA (miR)-1915-3p in NSCLC remain unclear. In this study, we aimed to explore the biological functions of miR-1915-3p in NSCLC. Methods The expression of miR-1915-3p and SET nuclear proto-oncogene (SET) in NSCLC tissues were examined by quantitative real-time PCR (qRT-PCR). Migratory and invasive abilities of lung cancer were tested by wound healing and transwell invasion assay. The direct target genes of miR-1915-3p were measured by dual-luciferase reporter assay and western blot. Finally, the regulation between METTL3/YTHDF2/KLF4 axis and miR-1915-3p were evaluated by qRT-PCR, promoter reporter assay and chromatin immunoprecipitation (CHIP). Results miR-1915-3p was downregulated in NSCLC tissues and cell lines, and inversely associated with clinical TNM stage and overall survival. Functional assays showed that miR-1915-3p significantly suppressed migration, invasion and epithelial-mesenchymal transition (EMT) in NSCLC cells. Furthermore, miR-1915-3p directly bound to the 3′untranslated region (3′UTR) of SET and modulated the expression of SET. SET inhibition could recapitulate the inhibitory effects on cell migration, invasion and EMT of miR-1915-3p, and restoration of SET expression could abrogate these effects induced by miR-1915-3p through JNK/Jun and NF-κB signaling pathways. What’s more, miR-1915-3p expression was regulated by METTL3/YTHDF2 m6A axis through transcription factor KLF4. Conclusions These findings demonstrate that miR-1915-3p function as a tumor suppressor by targeting SET and may have an anti-metastatic therapeutic potential for lung cancer treatment.