Predicting the Reliability of Drug-target Interaction Predictions with Maximum Coverage of Target Space
Abstract Many computational methods to predict the macromolecular targets of small organic molecules have been presented to date. Despite progress, target prediction methods still have important limitations. For example, the most accurate methods implicitly restrict their predictions to a relatively...
Enregistré dans:
Auteurs principaux: | Antonio Peón, Stefan Naulaerts, Pedro J. Ballester |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2017
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/d3c61d3ca21340c9835c42f70e3c47ad |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Expanding the drug discovery space with predicted metabolite–target interactions
par: Andrea Nuzzo, et autres
Publié: (2021) -
Predicting drug-target interaction networks based on functional groups and biological features.
par: Zhisong He, et autres
Publié: (2010) -
Prediction of drug-target interactions and drug repositioning via network-based inference.
par: Feixiong Cheng, et autres
Publié: (2012) -
NeuRank: learning to rank with neural networks for drug–target interaction prediction
par: Xiujin Wu, et autres
Publié: (2021) -
A systematic prediction of multiple drug-target interactions from chemical, genomic, and pharmacological data.
par: Hua Yu, et autres
Publié: (2012)