<italic>p</italic>-Power Exponential Mechanisms for Differentially Private Machine Learning
Differentially private stochastic gradient descent (DP-SGD) that perturbs the clipped gradients is a popular approach for private machine learning. Gaussian mechanism GM, combined with the moments accountant (MA), has demonstrated a much better privacy-utility tradeoff than using the advanced compos...
Saved in:
Main Authors: | , , , |
---|---|
Format: | article |
Language: | EN |
Published: |
IEEE
2021
|
Subjects: | |
Online Access: | https://doaj.org/article/d91648a81c8e4395a2b8d3247e9c873c |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|