Dissection of host cell signal transduction during Acinetobacter baumannii-triggered inflammatory response.

Infected airway epithelial cells up-regulate the expression of chemokines, chiefly IL-8, and antimicrobial molecules including beta-defensins (BD). Acinetobacter baumannii is a cause of hospital-acquired pneumonia. We examined whether A. baumannii induced the expressions of IL-8 and BD2 by airway ep...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Catalina March, Verónica Regueiro, Enrique Llobet, David Moranta, Pau Morey, Junkal Garmendia, José A Bengoechea
Formato: article
Lenguaje:EN
Publicado: Public Library of Science (PLoS) 2010
Materias:
R
Q
Acceso en línea:https://doaj.org/article/e0d1fef187c54f84b21e9cbbdb1cab36
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Infected airway epithelial cells up-regulate the expression of chemokines, chiefly IL-8, and antimicrobial molecules including beta-defensins (BD). Acinetobacter baumannii is a cause of hospital-acquired pneumonia. We examined whether A. baumannii induced the expressions of IL-8 and BD2 by airway epithelial cells and the receptors implicated in bacterial detection. A549 and human primary airway cells released IL-8 upon infection. A. baumannii-infected cells also increased the expression of BD2 which killed A. baummannii strains. IL-8 induction was via NF-kappaB and mitogen-activated kinases p38 and p44/42-dependent pathways. A. baumannii engaged Toll-like receptor (TLR) 2 and TLR4 pathways and A549 cells could use soluble CD14 as TLRs co-receptor. A. baumannii lipopolysaccharide stimulated IL-8 release by A549 cells and sCD14 facilitated the recognition of the lipopolysaccharide. Mass spectrometry analysis revealed that A. baumannii lipid A structure matches those with endotoxic potential. These results demonstrate that airway epithelial cells produce mediators important for A. baumannii clearance.