Determination of Sugar, pH, and Anthocyanin Contents in Port Wine Grape Berries through Hyperspectral Imaging: An Extensive Comparison of Linear and Non-Linear Predictive Methods
This paper presents an extended comparison study between 16 different linear and non-linear regression methods to predict the sugar, pH, and anthocyanin contents of grapes through hyperspectral imaging (HIS). Despite the numerous studies on this subject that can be found in the literature, they ofte...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/f270a53ee95945fca13e56d34b961c5b |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:f270a53ee95945fca13e56d34b961c5b |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:f270a53ee95945fca13e56d34b961c5b2021-11-11T15:20:37ZDetermination of Sugar, pH, and Anthocyanin Contents in Port Wine Grape Berries through Hyperspectral Imaging: An Extensive Comparison of Linear and Non-Linear Predictive Methods10.3390/app1121103192076-3417https://doaj.org/article/f270a53ee95945fca13e56d34b961c5b2021-11-01T00:00:00Zhttps://www.mdpi.com/2076-3417/11/21/10319https://doaj.org/toc/2076-3417This paper presents an extended comparison study between 16 different linear and non-linear regression methods to predict the sugar, pH, and anthocyanin contents of grapes through hyperspectral imaging (HIS). Despite the numerous studies on this subject that can be found in the literature, they often rely on the application of one or a very limited set of predictive methods. The literature on multivariate regression methods is quite extensive, so the analytical domain explored is too narrow to guarantee that the best solution has been found. Therefore, we developed an integrated linear and non-linear predictive analytics comparison framework (L&NL-PAC), fully integrated with five preprocessing techniques and five different classes of regression methods, for an effective and robust comparison of all alternatives through a robust Monte Carlo double cross-validation stratified data splitting scheme. L&NLPAC allowed for the identification of the most promising preprocessing approaches, best regression methods, and wavelengths most contributing to explaining the variability of each enological parameter for the target dataset, providing important insights for the development of precision viticulture technology, based on the HSI of grape. Overall, the results suggest that the combination of the Savitzky−Golay first derivative and ridge regression can be a good choice for the prediction of the three enological parameters.Véronique GomesRicardo RendallMarco Seabra ReisAna Mendes-FerreiraPedro Melo-PintoMDPI AGarticlewine grape berrieshyperspectral imaginglinear and non-linear regression methodspenalized regressionvariables importanceTechnologyTEngineering (General). Civil engineering (General)TA1-2040Biology (General)QH301-705.5PhysicsQC1-999ChemistryQD1-999ENApplied Sciences, Vol 11, Iss 10319, p 10319 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
wine grape berries hyperspectral imaging linear and non-linear regression methods penalized regression variables importance Technology T Engineering (General). Civil engineering (General) TA1-2040 Biology (General) QH301-705.5 Physics QC1-999 Chemistry QD1-999 |
spellingShingle |
wine grape berries hyperspectral imaging linear and non-linear regression methods penalized regression variables importance Technology T Engineering (General). Civil engineering (General) TA1-2040 Biology (General) QH301-705.5 Physics QC1-999 Chemistry QD1-999 Véronique Gomes Ricardo Rendall Marco Seabra Reis Ana Mendes-Ferreira Pedro Melo-Pinto Determination of Sugar, pH, and Anthocyanin Contents in Port Wine Grape Berries through Hyperspectral Imaging: An Extensive Comparison of Linear and Non-Linear Predictive Methods |
description |
This paper presents an extended comparison study between 16 different linear and non-linear regression methods to predict the sugar, pH, and anthocyanin contents of grapes through hyperspectral imaging (HIS). Despite the numerous studies on this subject that can be found in the literature, they often rely on the application of one or a very limited set of predictive methods. The literature on multivariate regression methods is quite extensive, so the analytical domain explored is too narrow to guarantee that the best solution has been found. Therefore, we developed an integrated linear and non-linear predictive analytics comparison framework (L&NL-PAC), fully integrated with five preprocessing techniques and five different classes of regression methods, for an effective and robust comparison of all alternatives through a robust Monte Carlo double cross-validation stratified data splitting scheme. L&NLPAC allowed for the identification of the most promising preprocessing approaches, best regression methods, and wavelengths most contributing to explaining the variability of each enological parameter for the target dataset, providing important insights for the development of precision viticulture technology, based on the HSI of grape. Overall, the results suggest that the combination of the Savitzky−Golay first derivative and ridge regression can be a good choice for the prediction of the three enological parameters. |
format |
article |
author |
Véronique Gomes Ricardo Rendall Marco Seabra Reis Ana Mendes-Ferreira Pedro Melo-Pinto |
author_facet |
Véronique Gomes Ricardo Rendall Marco Seabra Reis Ana Mendes-Ferreira Pedro Melo-Pinto |
author_sort |
Véronique Gomes |
title |
Determination of Sugar, pH, and Anthocyanin Contents in Port Wine Grape Berries through Hyperspectral Imaging: An Extensive Comparison of Linear and Non-Linear Predictive Methods |
title_short |
Determination of Sugar, pH, and Anthocyanin Contents in Port Wine Grape Berries through Hyperspectral Imaging: An Extensive Comparison of Linear and Non-Linear Predictive Methods |
title_full |
Determination of Sugar, pH, and Anthocyanin Contents in Port Wine Grape Berries through Hyperspectral Imaging: An Extensive Comparison of Linear and Non-Linear Predictive Methods |
title_fullStr |
Determination of Sugar, pH, and Anthocyanin Contents in Port Wine Grape Berries through Hyperspectral Imaging: An Extensive Comparison of Linear and Non-Linear Predictive Methods |
title_full_unstemmed |
Determination of Sugar, pH, and Anthocyanin Contents in Port Wine Grape Berries through Hyperspectral Imaging: An Extensive Comparison of Linear and Non-Linear Predictive Methods |
title_sort |
determination of sugar, ph, and anthocyanin contents in port wine grape berries through hyperspectral imaging: an extensive comparison of linear and non-linear predictive methods |
publisher |
MDPI AG |
publishDate |
2021 |
url |
https://doaj.org/article/f270a53ee95945fca13e56d34b961c5b |
work_keys_str_mv |
AT veroniquegomes determinationofsugarphandanthocyanincontentsinportwinegrapeberriesthroughhyperspectralimaginganextensivecomparisonoflinearandnonlinearpredictivemethods AT ricardorendall determinationofsugarphandanthocyanincontentsinportwinegrapeberriesthroughhyperspectralimaginganextensivecomparisonoflinearandnonlinearpredictivemethods AT marcoseabrareis determinationofsugarphandanthocyanincontentsinportwinegrapeberriesthroughhyperspectralimaginganextensivecomparisonoflinearandnonlinearpredictivemethods AT anamendesferreira determinationofsugarphandanthocyanincontentsinportwinegrapeberriesthroughhyperspectralimaginganextensivecomparisonoflinearandnonlinearpredictivemethods AT pedromelopinto determinationofsugarphandanthocyanincontentsinportwinegrapeberriesthroughhyperspectralimaginganextensivecomparisonoflinearandnonlinearpredictivemethods |
_version_ |
1718435404133171200 |