Continuous-Domain Formulation of Inverse Problems for Composite Sparse-Plus-Smooth Signals
We present a novel framework for the reconstruction of 1D composite signals assumed to be a mixture of two additive components, one sparse and the other smooth, given a finite number of linear measurements. We formulate the reconstruction problem as a continuous-domain regularized inverse problem wi...
Guardado en:
Autores principales: | Thomas Debarre, Shayan Aziznejad, Michael Unser |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/1c7cf37aba1449319c293363c48855cc |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Estimating regional pulmonary blood flow in EIT with regularized deconvolution with a Tikhonov regularization
por: Augustin Xenia, et al.
Publicado: (2020) -
A Regularization Homotopy Strategy for the Constrained Parameter Inversion of Partial Differential Equations
por: Tao Liu, et al.
Publicado: (2021) -
A Stable and High-Precision Downward Continuation Method of Magnetic Data
por: Zhiwen Zhou, et al.
Publicado: (2021) -
Twentieth century warming reflected by the Malan Glacier borehole temperatures, northern Tibetan Plateau
por: Huan Sun, et al.
Publicado: (2021) -
Space-dependent heat source determination problem with nonlocal periodic boundary conditions
por: M.J. Huntul
Publicado: (2021)