Influence of grape and acerola residues on the antioxidant, physicochemical and mechanical properties of cassava starch biocomposites
The aim of this work was to develop cassava starch biocomposites with varius concentrations of grape skin (Gr) and acerola (Ac) residues (0.1, 1.0, 5.0 and 10.0 wt%) using extrusion and injection molding processes. Grape residue had the highest concentration of total monomeric anthocyanin (ANC) and...
Guardado en:
Autores principales: | , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/1dadaaa0806c45ba830de999400e2b0d |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | The aim of this work was to develop cassava starch biocomposites with varius concentrations of grape skin (Gr) and acerola (Ac) residues (0.1, 1.0, 5.0 and 10.0 wt%) using extrusion and injection molding processes. Grape residue had the highest concentration of total monomeric anthocyanin (ANC) and Ac had the highest concentration of total phenolic content (TPC) and total sugars. The starch and fruit residues had thermal degradation onset temperatures above the processing temperature profile of polymer biocomposites. The results showed that the antioxidant, physicochemical, mechanical, and morphological properties of these biocomposites were influenced by the type and concentration of the fruit residues. The addition of grape skins and acerola residues to the cassava thermoplastic starch resulted in better antioxidant characteristics, indicating the potential of these formulations for the development of new bioactive packaging obtained by large-scale processes. |
---|