Silicon photonic beam steering module with backside coupling elements toward dense heterogeneous integration with drive electronics
Solid state beam steering devices are key elements in low cost, robust, and three-dimensional imaging systems. Here, we present a silicon photonic beam steering device based upon an 8 × 8 grating coupler focal plane array approach fed by a thermo-optic Mach–Zehnder switching tree. In this device, tr...
Guardado en:
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
AIP Publishing LLC
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/4e37c53029124e4faf55312f21fe88e7 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Solid state beam steering devices are key elements in low cost, robust, and three-dimensional imaging systems. Here, we present a silicon photonic beam steering device based upon an 8 × 8 grating coupler focal plane array approach fed by a thermo-optic Mach–Zehnder switching tree. In this device, transmission of light from the grating couplers is made through the backside of the chip using topside mirrors allowing for both high-efficiency out-coupling and direct flip-chip integration of drive electronics, providing a path to scale to denser focal plane arrays with large numbers of points in the future. A −13.8 dB fiber-to-fiber transmission was achieved in our preliminary test around 1523 nm for the beam steering chip. |
---|