Continuous Stabilization of Chardonnay with Ion-Exchage Resin: Influence on Protein and Phenolic Profile of Wine
Unstable proteins may react with polyphenols, forming haze and precipitation in white wines. Therefore, the adsorption of these wine proteins is an essential step in the production of white wines. The objective of this study was to determine the influence of adsorption of these proteins on the stabi...
Guardado en:
Autores principales: | , , , , , |
---|---|
Lenguaje: | English |
Publicado: |
Instituto de Investigaciones Agropecuarias, INIA
2009
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0718-58392009000100007 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Unstable proteins may react with polyphenols, forming haze and precipitation in white wines. Therefore, the adsorption of these wine proteins is an essential step in the production of white wines. The objective of this study was to determine the influence of adsorption of these proteins on the stability, and protein and phenolic composition of a Chardonnay wine. In this work, protein stabilization of Chardonnay wine was done by continuous adsorption using a packed bed with a SP-Trisacryl-M adsorbent (Sigma-Aldrich). A more pronounced breakthrough of proteins and turbidity causing compounds was found after treating 65 bed volumes of wine by the resin. An increased retention of the protein fraction of 20-50 kDa during the first 62 bed volumes of treated wine was related to improved wine stability. The removal of phenolics by Trisacryl was low. Caffeic acid and (-)-epicatechin were the main phenolic compounds that could be detected by high performance liquid chromatography (HPLC). Chardonnay, a low protein content wine, improved its stability after Trisacryl treatment due to the adsorption of the 20-50 kDa protein fraction. |
---|